Solveeit Logo

Question

Question: The greatest value of \(c\in R\) for which the system of linear equation \(\begin{aligned} &...

The greatest value of cRc\in R for which the system of linear equation
xcycz=0 cxy+cz=0 cx+cyz=0 \begin{aligned} & x-cy-cz=0 \\\ & cx-y+cz=0 \\\ & cx+cy-z=0 \\\ \end{aligned}
has a non-trivial solution, is:
(a) 12\dfrac{1}{2}
(b) 1-1
(c) 00
(d) 22

Explanation

Solution

So here to solve the given question we have firstly find the single equation from 1cc c1c cc1 =0\left| \begin{matrix} 1 & -c & -c \\\ c & -1 & c \\\ c & c & -1 \\\ \end{matrix} \right|=0 as we have given that this has non-trivial solution, and then we will get the equation after this we have to find the greatest value of the C
So For non-trivial solution, D=0D=0 we have given that,
i.e., 1cc c1c cc1 =0\left| \begin{matrix} 1 & -c & -c \\\ c & -1 & c \\\ c & c & -1 \\\ \end{matrix} \right|=0
Now, find the greatest value of cc .

Complete step-by-step solution
As you can see that is given in the question that the system of linear equations
xcycz=0 cxy+cz=0 cx+cyz=0 \begin{aligned} & x-cy-cz=0 \\\ & cx-y+cz=0 \\\ & cx+cy-z=0 \\\ \end{aligned}
has a non-trivial solution.
Now, let us understand the condition for a system of linear equations to have a non-trivial solution.
If the system of linear equation
px+qy+rz=0 p1x+q1y+r1z=0 p2x+q2y+r2z=0 \begin{aligned} & px+qy+rz=0 \\\ & {{p}_{1}}x+{{q}_{1}}y+{{r}_{1}}z=0 \\\ & {{p}_{2}}x+{{q}_{2}}y+{{r}_{2}}z=0 \\\ \end{aligned}
has a non-trivial solution, then
D=0D=0
i.e., pqr p1q1r1 p2q2r2 =0\left| \begin{matrix} p & q & r \\\ {{p}_{1}} & {{q}_{1}} & {{r}_{1}} \\\ {{p}_{2}} & {{q}_{2}} & {{r}_{2}} \\\ \end{matrix} \right|=0
\therefore We have
1cc c1c cc1 =0\left| \begin{matrix} 1 & -c & -c \\\ c & -1 & c \\\ c & c & -1 \\\ \end{matrix} \right|=0
Expanding w.r.t. R1(first row){{R}_{1}}\left( first\text{ }row \right) , we get
11c c1 (c)cc c1 +(c)c1 cc =01\left| \begin{matrix} -1 & c \\\ c & -1 \\\ \end{matrix} \right|-\left( -c \right)\left| \begin{matrix} c & c \\\ c & -1 \\\ \end{matrix} \right|+\left( -c \right)\left| \begin{matrix} c & -1 \\\ c & c \\\ \end{matrix} \right|=0

& \Rightarrow 1\left[ \left( -1 \right)\left( -1 \right)-\left( c \right)\left( c \right) \right]-\left( -c \right)\left[ \left( c \right)\left( -1 \right)-\left( c \right)\left( c \right) \right]+\left( -c \right)\left[ \left( c \right)\left( c \right)-\left( c \right)\left( -1 \right) \right]=0 \\\ & \Rightarrow 1\left( 1-{{c}^{2}} \right)+c\left( -c-{{c}^{2}} \right)-c\left( {{c}^{2}}+c \right)=0 \\\ & \Rightarrow 1-{{c}^{2}}-{{c}^{2}}-{{c}^{3}}-{{c}^{3}}-{{c}^{2}}=0 \\\ & \Rightarrow 1-3{{c}^{2}}-2{{c}^{3}}=0 \\\ & \Rightarrow 2{{c}^{3}}+3{{c}^{2}}-1=0 \\\ \end{aligned}$$ Now we have a cubic equation. So we solve this cubic equation by remainder theorem. For this, we shall use trial and error methods. Let us put $$c=-1$$ . Then $\begin{aligned} & L.H.S.=2{{\left( -1 \right)}^{3}}+3{{\left( -1 \right)}^{2}}-1 \\\ & \text{ }=-2+3-1 \\\ & \text{ }=-3+3 \\\ & \text{ }=0=R.H.S. \\\ \end{aligned}$ $$\therefore \left( c+1 \right)$$ is a root of the cubic equation $2{{c}^{3}}+3{{c}^{2}}-1=0$ . Now we will divide the equation $2{{c}^{3}}+3{{c}^{2}}-1=0$ by $$\left( c+1 \right)$$ . $$c+1\overset{2{{c}^{2}}+c-1}{\overline{\left){\dfrac{\begin{aligned} & 2{{c}^{3}}+3{{c}^{2}}-1 \\\ & 2{{c}^{3}}+2{{c}^{2}} \\\ & -\text{ }- \\\ \end{aligned}}{\dfrac{\begin{aligned} & \text{ }{{c}^{2}}-1 \\\ & \text{ }{{c}^{2}}+c \\\ & \text{ }-\text{ }- \\\ \end{aligned}}{\dfrac{\begin{aligned} & \text{ }-c-1 \\\ & \text{ }-c-1 \\\ & \text{ + +} \\\ \end{aligned}}{\text{ }0}}}}\right.}}$$ $$2{{c}^{3}}+3{{c}^{2}}-1=\left( c+1 \right)\left( 2{{c}^{2}}+c-1 \right)$$ Let us factorize the equation $$\left( 2{{c}^{2}}+c-1 \right)$$ . $$\begin{aligned} & \therefore \left( 2{{c}^{2}}+c-1 \right)=2{{c}^{2}}+2c-c-1 \\\ & \text{ }=2c\left( c+1 \right)-\left( c+1 \right) \\\ & \text{ }=\left( 2c-1 \right)\left( c+1 \right) \\\ \end{aligned}$$ Thus, we have $$\begin{aligned} & 2{{c}^{3}}+3{{c}^{2}}-1=\left( c+1 \right)\left( 2{{c}^{2}}+c-1 \right) \\\ & \text{ }=\left( c+1 \right)\left( 2c-1 \right)\left( c+1 \right) \\\ & \text{ }={{\left( c+1 \right)}^{2}}\left( 2c-1 \right) \\\ \end{aligned}$$ $$\begin{aligned} & \therefore 2{{c}^{3}}+3{{c}^{2}}-1=0 \\\ & \Rightarrow {{\left( c+1 \right)}^{2}}\left( 2c-1 \right)=0 \\\ & \Rightarrow {{\left( c+1 \right)}^{2}}=0\text{ }or\text{ }\left( 2c-1 \right)=0 \\\ & \Rightarrow c=-1,-1\text{ }or\text{ }c=\dfrac{1}{2} \\\ \end{aligned}$$ Thus, the greatest value of $c\in R$ for which the system of linear equation $\begin{aligned} & x-cy-cz=0 \\\ & cx-y+cz=0 \\\ & cx+cy-z=0 \\\ \end{aligned}$ has a non-trivial solution, is $\dfrac{1}{2}$ . **Hence, the correct option is (a).** **Note:** It is very important to remember the condition for a system of linear equations to have a non-trivial solution. One can expand the determinant with respect to any row but the calculation should be done properly in order to find the solution. We also have the shortcut we have given the condition $c\in R$ which means our answer should be a Rational number and we have a rational number in the option (a) only so this is the correct answer.