Question
Question: The greatest terms of the expansion \( {\left( {2x + 5y} \right)^{13}} \) when x = 10, y = 2 is A)...
The greatest terms of the expansion (2x+5y)13 when x = 10, y = 2 is
A) 13C5.208.104
B) 13C6.207.105
C) 13C4.209.104
D) None of these
Solution
Hint : As the power of the given expression is very large, we can find its greatest term using the general formula for the binomial expansion. While expanding, we can substitute the given values of x and y so as to find the value of r and get the required greatest term.
Formula to be used:
For (x+y)n, the general term is given as:
Tr+1=nCr.xn−r.yr
The value of nCr can be calculated using the factorial formula as:
nCr=(n−r)!r!n!
Complete step by step solution:
We can find the expansion of the given term using the binomial expansion. But, we need to find the greatest term of expression, for that, we will use the formula for the general term of binomial expansion given as:
If Tr be the largest term of this expansion, it will lie between the other terms as:
Tr−1<Tr>Tr+1....(2)
The base of the general term is (r+1), writing the bases of these terms in this context, we get:
Tr−2+1<Tr−1+1>Tr+1
Expressions of these terms using (1) can be given as:
Tr−1⇒Tr−2+1=nCr−2.xn−(r−2).yr−2 Tr⇒Tr−1+1=nCr−1.xn−(r−1).yr−1 Tr+1⇒Tr=nCr.xn−r.yr
Now, the given expression is (2x+5y)13 , comparing it with (x+y)n :
x = 2x
y = 5y
n = 13
Substituting these values in the obtained expressions, we get:
Tr−1=13Cr−2.(2x)13−(r−2).(5y)r−2 ⇒Tr−1=13Cr−2.(2x)15−r.(5y)r−2 Tr=13Cr−1.(2x)13−(r−1).(5y)r−1 ⇒Tr=13Cr−1.(2x)14−r.(5y)r−1 Tr+1=13Cr.(2x)13−r.(5y)r
From (2):
Substituting the values:
13Cr−2(2x)15−r(5y)r−213Cr−1(2x)14−r(5y)r−1>1
Using nCr=(n−r)!r!n! , the inequality becomes:
{T_r} > {T_{r + 1}} \\
\Rightarrow \dfrac{{{T_r}}}{{{T_{r + 1}}}} > 1 \\
\Rightarrow \dfrac{{{T_{r + 1}}}}{{{T_r}}} < 1 ;
\dfrac{{\dfrac{{13!}}{{\left( {13 - r} \right)!r!}}}}{{\dfrac{{13!}}{{\left[ {13 - \left( {r - 1} \right)} \right]!\left( {r - 1} \right)!}}}} \times {\left( {2x} \right)^{13 - r - 14 + r}} \times {\left( {5y} \right)^{r - r + 1}} < 1 \\
\Rightarrow \dfrac{{\dfrac{{13!}}{{\left( {13 - r} \right)!r!}}}}{{\dfrac{{13!}}{{\left( {14 - r} \right)!\left( {r - 1} \right)!}}}} \times \dfrac{1}{{2x}} \times 5y < 1 \\
\Rightarrow \dfrac{{14 - r}}{{2r}} \times \dfrac{1}{{2x}} \times 5y < 1 ;