Solveeit Logo

Question

Question: The greatest integer which divides the number \(101^{100} - 1\) is...

The greatest integer which divides the number 1011001101^{100} - 1 is

A

100

B

1000

C

10000

D

100000

Answer

10000

Explanation

Solution

(1+100)100=1+100.100+100.991.2(100)2+....(1 + 100)^{100} = 1 + 100.100 + \frac{100.99}{1.2}(100)^{2} + ....

1011001=100.100[1+100.991.2+100.99.983.2.1100+.....]101^{100} - 1 = 100.100\left\lbrack 1 + \frac{100.99}{1.2} + \frac{100.99.98}{3.2.1}100 + ..... \right\rbrack

From above it is clear that, 1011001101^{100} - 1 is divisible by (100)2=10000(100)^{2} = 10000