Solveeit Logo

Question

Mathematics Question on Principle of Mathematical Induction

The greatest integer less than or equal to the sum of first 100100 terms of the sequence 13,59,1927,6581,...\frac 13, \frac 59, \frac {19}{27}, \frac {65}{81},…... is equal to ______.

Answer

13,59,1927,6581,...\frac 13, \frac 59, \frac {19}{27}, \frac {65}{81},…...

S=r=1100(3r2r3r)S= \displaystyle\sum_{r=1}^{100} (\frac {3^r−2^r}{3^r})

S=10023(1(23)100)13S=100−\frac 23 \frac {(1−(\frac 23)^{100})}{\frac 13}

S=98+2(23)100S=98+2(\frac 23)^{100}
S=98S = 98

So, the answer is 9898.