Solveeit Logo

Question

Question: The greatest coefficient in the expansion of \((1 + x)^{2n + 2}\) is...

The greatest coefficient in the expansion of (1+x)2n+2(1 + x)^{2n + 2} is

A

(2n)!n!2\frac{(2n)!}{n!^{2}}

B

(2n+2)![(n+1)!]2\frac{(2n + 2)!}{\lbrack(n + 1)!\rbrack^{2}}

C

(2n+2)!n!(n+1)!\frac{(2n + 2)!}{n!(n + 1)!}

D

(2n)!n!.(n+1)!\frac{(2n)!}{n!.(n + 1)!}

Answer

(2n+2)![(n+1)!]2\frac{(2n + 2)!}{\lbrack(n + 1)!\rbrack^{2}}

Explanation

Solution

\because n is even so greatest coefficient in (1+x)2n+2(1 + x)^{2n + 2} is

= 2n+2Cn+1={ } ^ { 2 n + 2 } C _ { n + 1 } = (2n+2)![(n+1)!]2\frac{(2n + 2)!}{\lbrack(n + 1)!\rbrack^{2}}