Solveeit Logo

Question

Question: The greatest and the least value of \({\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ -...

The greatest and the least value of (sin1x)2+(cos1x)2{\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2} are respectively
(A)π24and0\left( A \right)\,\,\dfrac{{{\pi ^2}}}{4}\,\,and\,\,0
(B)π24andπ2\left( B \right)\,\,\dfrac{{{\pi ^2}}}{4}\,\,and\,\,\dfrac{{ - \pi }}{2}
(C)5π24andπ28\left( C \right)\,\,\dfrac{{5{\pi ^2}}}{4}\,\,and\,\,\dfrac{{{\pi ^2}}}{8}
(D)π44andπ24\left( D \right)\,\,\dfrac{{{\pi ^4}}}{4}\,\,and\,\, - \dfrac{{{\pi ^2}}}{4}

Explanation

Solution

There are some properties or we can say formulas of inverse trigonometry which we can use here. Also, there is one formula of algebra which is used here. But you have to use it carefully as it is applied in a tricky way. We should also know how to find the greatest and the least term when there are some variables involved.

Formula used: sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}
(a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab

Complete step by step answer:
In the given question, we have
(sin1x)2+(cos1x)2\Rightarrow {\left( {{{\sin }^{ - 1}}x} \right)^2} + {\left( {{{\cos }^{ - 1}}x} \right)^2}
Now, we know that (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
So, applying this formula in above equation
(sin1x+cos1x)22sin1xcos1x\Rightarrow {\left( {{{\sin }^{ - 1}}x + {{\cos }^{ - 1}}x} \right)^2} - 2{\sin ^{ - 1}}x{\cos ^{ - 1}}x
As we know that, sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}
(π2)22sin1x(π2sin1x)\Rightarrow {\left( {\dfrac{\pi }{2}} \right)^2} - 2{\sin ^{ - 1}}x\left( {\dfrac{\pi }{2} - {{\sin }^{ - 1}}x} \right)
On multiplying, we get
π24πsin1x+2(sin1x)2\Rightarrow \dfrac{{{\pi ^2}}}{4} - \pi {\sin ^{ - 1}}x + 2{\left( {{{\sin }^{ - 1}}x} \right)^2}
Now, taking out 22 common
2[(sin1x)2π2sin1x+π28]\Rightarrow 2\left[ {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{8}} \right]
Now adding and subtracting (π4)2{\left( {\dfrac{\pi }{4}} \right)^2}
2[(sin1x)2π2sin1x+π28+(π4)2(π4)2]\Rightarrow 2\left[ {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x + \dfrac{{{\pi ^2}}}{8} + {{\left( {\dfrac{\pi }{4}} \right)}^2} - {{\left( {\dfrac{\pi }{4}} \right)}^2}} \right]
\Rightarrow 2\left[ {\left\\{ {{{\left( {{{\sin }^{ - 1}}x} \right)}^2} + {{\left( {\dfrac{\pi }{4}} \right)}^2} - \dfrac{\pi }{2}{{\sin }^{ - 1}}x} \right\\} + \left\\{ {\dfrac{{{\pi ^2}}}{8} - {{\left( {\dfrac{\pi }{4}} \right)}^2}} \right\\}} \right]
Now, using (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab
2[(sin1xπ4)2+π216]\Rightarrow 2\left[ {{{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{16}}} \right]
We know that (sin1xπ4)2{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2} either can be positive or zero but not negative. So, its minimum value is 00.
Therefore, the least value of our expression is 2(π216)i.e.π282\left( {\dfrac{{{\pi ^2}}}{{16}}} \right)\,i.e.\,\dfrac{{{\pi ^2}}}{8} .
To find the greatest value, we have to make (sin1xπ4)2{\left( {{{\sin }^{ - 1}}x - \dfrac{\pi }{4}} \right)^2} maximum. To make it maximum we have to add the largest negative value in it which should also lie in the range of sin1x{\sin ^{ - 1}}x i.e. π2\dfrac{{ - \pi }}{2}.
Therefore, on putting the value of sin1x{\sin ^{ - 1}}x
2[(π2π4)2+π216]\Rightarrow 2\left[ {{{\left( { - \dfrac{\pi }{2} - \dfrac{\pi }{4}} \right)}^2} + \dfrac{{{\pi ^2}}}{{16}}} \right]
2[9π216+π216]\Rightarrow 2\left[ {\dfrac{{9{\pi ^2}}}{{16}} + \dfrac{{{\pi ^2}}}{{16}}} \right]
5π24\Rightarrow \dfrac{{5{\pi ^2}}}{4}
Therefore, the greatest value of our expression is 5π24\dfrac{{5{\pi ^2}}}{4}.
Hence, the correct option is (C)\left( C \right).

Note:
The inverse trigonometric functions are also popular as the anti-trigonometric functions. Sometimes these are also termed as arcus functions or cyclometric functions. The inverse trigonometric functions of various trigonometric ratios such as sine, cosine, tangent, cosecant, secant, and cotangent are defined. The inverse trigonometric formulae will help the students to solve the problems in an easy way with the application of these properties.