Solveeit Logo

Question

Question: The greater of two angles A = 2 tan<sup>–1</sup> (\(2 \sqrt { 2 }\)–1) and B = 3 sin<sup>–1</sup> (...

The greater of two angles A = 2 tan–1 (222 \sqrt { 2 }–1) and

B = 3 sin–1 (1/3) + sin–1 (3/5) is

A

A

B

B

C

Both are equal

D

None of these

Answer

A

Explanation

Solution

A = 2 tan–1 (221)( 2 \sqrt { 2 } - 1 )

= 2 tan–1 (2 × 1.414 –1) = 2 tan–1 (1.828)

Ž A > 2 tan–1 3\sqrt { 3 } = 2p/3

For angle B, sin–113\frac { 1 } { 3 }< sin–1 12\frac { 1 } { 2 } = π6\frac { \pi } { 6 } Ž 3 sin–1 (13)\left( \frac { 1 } { 3 } \right) < π2\frac { \pi } { 2 }

3 sin–1(2327)\left( \frac { 23 } { 27 } \right)

= sin–1 (.851) < sin–132\frac { \sqrt { 3 } } { 2 }=π3\frac { \pi } { 3 } Ž 3 sin–1 (13)\left( \frac { 1 } { 3 } \right) <π3\frac { \pi } { 3 }

Also sin–1 π3\frac { \pi } { 3 }

so sin–1π3\frac { \pi } { 3 }

Adding B = 3 sin–113\frac { 1 } { 3 }+ sin–1 35\frac { 3 } { 5 }< 2π3\frac { 2 \pi } { 3 } So A > B