Solveeit Logo

Question

Question: The greater of \(\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { x } d x\) and \(\frac { \pi } { 2 ...

The greater of 0π/2sinxxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { x } d x and π2\frac { \pi } { 2 } is

A

π2\frac { \pi } { 2 }

B

0π/2sinxxdx\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { x } d x

C

Nothing can be said

D

None of these

Answer

π2\frac { \pi } { 2 }

Explanation

Solution

Since sinx<x\sin x < x for 0<xπ/20 < x \leq \pi / 2

So, 0π/2sinxxdx<0π/21dx=π2\int _ { 0 } ^ { \pi / 2 } \frac { \sin x } { x } d x < \int _ { 0 } ^ { \pi / 2 } 1 d x = \frac { \pi } { 2 } .