Solveeit Logo

Question

Question: The gravitational potential of two homogeneous spherical shells A and B of same surface density at t...

The gravitational potential of two homogeneous spherical shells A and B of same surface density at their respective centres are in the ratio 3 : 4. If the two shells coalesce into single one such that surface charge density remains same, then the ratio of potential at an internal point of the new shell A is equal to –

A

3 : 2

B

4 : 3

C

5 : 3

D

5 : 6

Answer

5 : 3

Explanation

Solution

MA = s4p, MB = s4p

where s is surface density

VA =, VB =

34\frac { 3 } { 4 }

then RB = 43\frac { 4 } { 3 } RA

For new shell of mass M and Radius R -

M = MA + MB = σ4π[RA2+RB2](RA2+RB2)1/2\frac { \sigma 4 \pi \left[ \mathrm { R } _ { \mathrm { A } } ^ { 2 } + \mathrm { R } _ { \mathrm { B } } ^ { 2 } \right] } { \left( \mathrm { R } _ { \mathrm { A } } ^ { 2 } + \mathrm { R } _ { \mathrm { B } } ^ { 2 } \right) ^ { 1 / 2 } } RAσ4πRA2\frac { \mathrm { R } _ { \mathrm { A } } } { \sigma 4 \pi \mathrm { R } _ { \mathrm { A } } ^ { 2 } }

= RA2+RB2RA\frac { \sqrt { \mathrm { R } _ { \mathrm { A } } ^ { 2 } + \mathrm { R } _ { \mathrm { B } } ^ { 2 } } } { \mathrm { R } _ { \mathrm { A } } } = 53\frac { 5 } { 3 }