Solveeit Logo

Question

Question: The gradient of the curve \({{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}\) is given by (a) \(\d...

The gradient of the curve xmyn=(x+y)m+n{{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}} is given by
(a) xy\dfrac{x}{y}
(b) yx\dfrac{y}{x}
(c) xy\dfrac{-x}{y}
(d) yx\dfrac{-y}{x}

Explanation

Solution

Hint : In this question, we are asked to find the gradient of a curve whose equation is given. As in two dimensions, the gradient of the curve should be equal to dydx\dfrac{dy}{dx}, therefore, we should try to simplify the equation by taking logarithms on both sides of the equation and then use the chain rule to obtain a differential equation. Then, we can take terms involving dydx\dfrac{dy}{dx} to one side and simplify the resulting equation to find the value of dydx\dfrac{dy}{dx} which will be our required answer.

Complete step by step solution :
The given equation of the curve is
xmyn=(x+y)m+n.................(1.1){{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}}.................(1.1)
As there are exponents in the expression, we can simplify the equation by taking logarithm on both sides. We can use the following properties of logarithms for any two numbers a and b
log(ab)=log(a)+log(b) log(ab)=blog(a)......................(1.2) \begin{aligned} & \log \left( ab \right)=\log \left( a \right)+\log \left( b \right) \\\ & \log \left( {{a}^{b}} \right)=b\log (a)......................(1.2) \\\ \end{aligned}
Using the properties in (1.2) and taking log on both sides of (1.1), we obtain
xmyn=(x+y)m+n log(xmyn)=log((x+y)m+n) mlog(x)+nlog(y)=(m+n)log(x+y)..........(1.3) \begin{aligned} & {{x}^{m}}{{y}^{n}}={{\left( x+y \right)}^{m+n}} \\\ & \Rightarrow \log \left( {{x}^{m}}{{y}^{n}} \right)=\log \left( {{\left( x+y \right)}^{m+n}} \right) \\\ & \Rightarrow m\log \left( x \right)+n\log \left( y \right)=(m+n)\log \left( x+y \right)..........(1.3) \\\ \end{aligned}
Now, we can use the chain rule of derivatives which states that if y is a function of x and f(y) is a function of y, then
df(y)dx=df(y)dy×dydx.....................(1.4)\dfrac{df(y)}{dx}=\dfrac{df(y)}{dy}\times \dfrac{dy}{dx}.....................(1.4)
And the derivative of log function is given by
dlog(x)dx=1x................(1.5)\dfrac{d\log (x)}{dx}=\dfrac{1}{x}................(1.5)
Taking derivative with respect to x on both sides of (1.3) and using equations (1.4) and (1.5), we get
mlog(x)+nlog(y)=(m+n)log(x+y) d(mlog(x)+nlog(y))dx=d((m+n)log(x+y))dx mdlogxdx+ndlogydy×dydx=(m+n)dlog(x+y)d(x+y)×d(x+y)dx mx+ny×dydx=(m+n)1(x+y)(dxdx+dydx)=(m+n)1(x+y)(1+dydx) \begin{aligned} & m\log \left( x \right)+n\log \left( y \right)=(m+n)\log \left( x+y \right) \\\ & \Rightarrow \dfrac{d\left( m\log \left( x \right)+n\log \left( y \right) \right)}{dx}=\dfrac{d\left( (m+n)\log \left( x+y \right) \right)}{dx} \\\ & \Rightarrow m\dfrac{d\log x}{dx}+n\dfrac{d\log y}{dy}\times \dfrac{dy}{dx}=(m+n)\dfrac{d\log (x+y)}{d(x+y)}\times \dfrac{d(x+y)}{dx} \\\ & \Rightarrow \dfrac{m}{x}+\dfrac{n}{y}\times \dfrac{dy}{dx}=(m+n)\dfrac{1}{\left( x+y \right)}\left( \dfrac{dx}{dx}+\dfrac{dy}{dx} \right)=(m+n)\dfrac{1}{\left( x+y \right)}\left( 1+\dfrac{dy}{dx} \right) \\\ \end{aligned}
We can collect terms involving dydx\dfrac{dy}{dx} to the left hand side in the last line to obtain
dydx×(nym+n(x+y))=(m+n)1(x+y)mx dydx×(nx+nymynyy(x+y))=mx+nxmxmyx(x+y) dydx×(nxmyy(x+y))=nxmyx(x+y) \begin{aligned} & \dfrac{dy}{dx}\times \left( \dfrac{n}{y}-\dfrac{m+n}{\left( x+y \right)} \right)=(m+n)\dfrac{1}{\left( x+y \right)}-\dfrac{m}{x} \\\ & \Rightarrow \dfrac{dy}{dx}\times \left( \dfrac{nx+ny-my-ny}{y\left( x+y \right)} \right)=\dfrac{mx+nx-mx-my}{x\left( x+y \right)} \\\ & \Rightarrow \dfrac{dy}{dx}\times \left( \dfrac{nx-my}{y\left( x+y \right)} \right)=\dfrac{nx-my}{x\left( x+y \right)} \\\ \end{aligned}
Cancelling the term nxmy(x+y)\dfrac{nx-my}{(x+y)} from both sides, we obtain
dydx=yx\dfrac{dy}{dx}=\dfrac{y}{x}
Which matches option (b) of the question. Therefore, option (b) is the correct answer to this question.

Note : We should note that we took logarithm on both sides to make the equations simpler to handle. However, we could have directly taken derivative with respect to x on both sides of the given equation and used the formula d(xn)dx=nxn1\dfrac{d({{x}^{n}})}{dx}=n{{x}^{n-1}} and the chain rule to find the value of dydx\dfrac{dy}{dx}. However, the final answer will remain the same in both the methods.