Solveeit Logo

Question

Question: The given terms, \({\log _3}2\), \({\log _6}2\), \({\log _{12}}2\) are in \({\text{A}}{\text{.}}\)...

The given terms, log32{\log _3}2, log62{\log _6}2, log122{\log _{12}}2 are in
A.{\text{A}}{\text{.}} HP
B.{\text{B}}{\text{.}} AP
C.{\text{C}}{\text{.}} GP
D.{\text{D}}{\text{.}} None of these

Explanation

Solution

Hint- Make the base of all logs same and perform specific operations to find the required answer. Doing by eliminating options in competitive exams will be better.

Let a=log32a = {\log _3}2, b=log62b = {\log _6}2 and c=log122c = {\log _{12}}2
Since, lognm=logmlogn{\log _n}m = \dfrac{{\log m}}{{\log n}}
a=log2log3\Rightarrow a = \dfrac{{\log 2}}{{\log 3}}, b=log2log6b = \dfrac{{\log 2}}{{\log 6}}, c=log2log12c = \dfrac{{\log 2}}{{\log 12}}
Here, the reciprocal of the given numbers are given by 1a=log3log2,1b=log6log2,1c=log12log2\dfrac{1}{a} = \dfrac{{\log 3}}{{\log 2}},\dfrac{1}{b} = \dfrac{{\log 6}}{{\log 2}},\dfrac{1}{c} = \dfrac{{\log 12}}{{\log 2}}
Now let us find out 1a+1c=log3log2+log12log2=log3+log12log2\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log 3}}{{\log 2}} + \dfrac{{\log 12}}{{\log 2}} = \dfrac{{\log 3 + \log 12}}{{\log 2}}
As we know that logm+logn=logmn\log m + \log n = \log mn
1a+1c=log(3×12)log2=log36log2=log(62)log2\Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{\log \left( {3 \times 12} \right)}}{{\log 2}} = \dfrac{{\log 36}}{{\log 2}} = \dfrac{{\log \left( {{6^2}} \right)}}{{\log 2}}
Also we know that log(mn)=nlogm{\text{log}}\left( {{m^n}} \right) = n\log m
1a+1c=2log6log2=2b\Rightarrow \dfrac{1}{a} + \dfrac{1}{c} = \dfrac{{2\log 6}}{{\log 2}} = \dfrac{2}{b}.
Since, the condition for three numbers i.e., a,b,ca,b,c to be in Harmonic progression is 1a+1c=2b\dfrac{1}{a} + \dfrac{1}{c} = \dfrac{2}{b}.
Therefore, the given three numbers i.e., a=log32, b=log62, c=log122a = {\log _3}2,{\text{ }}b = {\log _6}2,{\text{ }}c = {\log _{12}}2 are clearly in HP.
Therefore, option A is correct.

Note- For three numbers to be in Harmonic Progression (HP), twice the reciprocal of the middle number should be equal to the sum of the reciprocal of the other two numbers.