Solveeit Logo

Question

Question: The given function is \[F(x)=\left( \begin{aligned} & \dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){...

The given function is F(x)=(x+3x2+5x3+...+(2n1)xnn2x1;x1 n(n21)3;x=1 )F(x)=\left( \begin{aligned} & \dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}}{x-1};x\ne 1 \\\ & \dfrac{n({{n}^{2}}-1)}{3};x=1 \\\ \end{aligned} \right) . Check if the function is continuous at x = 1

Explanation

Solution

Now we know that the condition for the function to be continuous is limx1F(x)=F(1)\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1) .
Hence first we will find limx1F(x)\underset{x\to 1}{\mathop{\lim }}\,F(x) . To remove indeterminate form L hospital rule. Now that the indeterminate form is removed we can substitute x = 1 to find limx1F(x)\underset{x\to 1}{\mathop{\lim }}\,F(x). Now we know that n=n(n+1)2\sum{n}=\dfrac{n\left( n+1 \right)}{2} and n2=n(n+1)(2n+1)6\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6} . we will use this to simplify the expression further. Now we know that F(1)=n(n21)3F(1)=\dfrac{n({{n}^{2}}-1)}{3} Hence, we will check if limx1F(x)=F(1)\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1) and determine if the function is continuous.

Complete step by step answer:
Now if function is continuous at x = 1 we have limx1F(x)=F(1)\underset{x\to 1}{\mathop{\lim }}\,F(x)=F(1)
We know that F(1)=n(n21)3...................................(1)F(1)=\dfrac{n({{n}^{2}}-1)}{3}...................................(1)
Now consider L=limx1F(x)L=\underset{x\to 1}{\mathop{\lim }}\,F(x).
Hence we have L=limx1x+3x2+5x3+...+(2n1)xnn2x1L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}}}{x-1}
Now to solve this limit we will use the L-Hospital rule.
According to L-Hospital rule we have limx1f(x)g(x)=limx1f(x)g(x)\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f(x)}{g(x)}=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{f'(x)}{g'(x)}
Now we know that d(f+g)dx=dfdx+dgdx\dfrac{d(f+g)}{dx}=\dfrac{df}{dx}+\dfrac{dg}{dx} and for any non-zero n we have dxndx=nxn1\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}
Hence we get
L=limx11+6x+15x2+...+n(2n1)xn101 L=limx1(1+6x+15x2+...+n(2n1)xn10) \begin{aligned} & L=\underset{x\to 1}{\mathop{\lim }}\,\dfrac{1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0}{-1} \\\ & \Rightarrow L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right) \\\ \end{aligned}
Now we can substitute x = 1, to solve the limit.
L=(1+6+15+...+n(2n1))L=\left( 1+6+15+...+n(2n-1) \right)
Now this is nothing but
L=(1+2(2(2)1)+3(2(3)1))+...n(2n1) L=(n(2n1)) \begin{aligned} & L=\left( 1+2\left( 2\left( 2 \right)-1 \right)+3\left( 2\left( 3 \right)-1 \right) \right)+...n(2n-1) \\\ & L=\left( \sum{n(2n-1)} \right) \\\ \end{aligned}
Now multiplying the terms n and (2n – 1) we get
L=(2n2n)L=\sum{\left( 2{{n}^{2}}-n \right)}
Now we know that (ab)=ab\sum{\left( a-b \right)}=\sum{a}-\sum{b}
Hence we have
L=((2n2)n)................(2)L=\left( \sum{\left( 2{{n}^{2}} \right)}-\sum{n} \right)................\left( 2 \right)
Now we have n=n(n+1)2\sum{n}=\dfrac{n\left( n+1 \right)}{2} and n2=n(n+1)(2n+1)6\sum{{{n}^{2}}}=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{6}
Now we will substitute this expansion in (2).
L=n(n+1)(2n+1)3n(n+1)2L=\dfrac{n\left( n+1 \right)\left( 2n+1 \right)}{3}-\dfrac{n(n+1)}{2}
Taking LCM we get
L=2n(n+1)(2n+1)3n(n+1)6 L=n(n+1)[2(2n+1)3]6 L=n(n+1)[4n+23]6 L=n(n+1)(4n1)6 L=limx1F(x)=n(n+1)(4n1)6 \begin{aligned} & L=\dfrac{2n\left( n+1 \right)\left( 2n+1 \right)-3n\left( n+1 \right)}{6} \\\ & \Rightarrow L=\dfrac{n\left( n+1 \right)[2\left( 2n+1 \right)-3]}{6} \\\ & \Rightarrow L=\dfrac{n\left( n+1 \right)[4n+2-3]}{6} \\\ & \Rightarrow L=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\\ & \therefore L=\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6} \\\ \end{aligned}
Hence we get limx1F(x)=n(n+1)(4n1)6............................(3)\underset{x\to 1}{\mathop{\lim }}\,F(x)=\dfrac{n\left( n+1 \right)\left( 4n-1 \right)}{6}............................\left( 3 \right)
Now from equation (1) and equation (3) we get.
limx1F(x)F(1)\underset{x\to 1}{\mathop{\lim }}\,F(x)\ne F(1)
Hence the function is not continuous at x = 1.

Note:
Now here we can also solve this limit by dividing x+3x2+5x3+...+(2n1)xnn2x+3{{x}^{2}}+5{{x}^{3}}+...+(2n-1){{x}^{n}}-{{n}^{2}} by (x – 1), then we will have the limit in solvable form as (x – 1) from denominator will be cancelled.
Also we can solve this in short cut method
Once we have L=limx1(1+6x+15x2+...+n(2n1)xn10)L=\underset{x\to 1}{\mathop{\lim }}\,\left( 1+6x+15{{x}^{2}}+...+n(2n-1){{x}^{n-1}}-0 \right) we can check the value for n = 2 and x = 1 which will be 1 + 6 = 7
On the other hand for n = 2 we have n(n21)3\dfrac{n({{n}^{2}}-1)}{3} = 2.
Hence we have both values are not equal and the function is discontinuous