Solveeit Logo

Question

Question: The given equation is \( {{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} ...

The given equation is tan1(x+1)+tan1(x1)=tan1(831){{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} \right) find the value of x.

Explanation

Solution

Now we know that tan1A+tan1B=tan1(A+B1AB){{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) . Hence we will simplify the left hand side with this formula. Then we will use the formula that tan1A=tan1BA=B{{\tan }^{-1}}A={{\tan }^{-1}}B\Rightarrow A=B
Hence we will find an equation in x. After simplifying the equation we will get a quadratic in x. We will solve the quadratic to find the values of x.

Complete step-by-step answer:
Now consider the given equation tan1(x+1)+tan1(x1)=tan1(831){{\tan }^{-1}}(x+1)+{{\tan }^{-1}}(x-1)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)
Now we know that tan1A+tan1B=tan1(A+B1AB){{\tan }^{-1}}A+{{\tan }^{-1}}B={{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) hence using this we get
tan1(x+1+x11(x+1)(x1))=tan1(831){{\tan }^{-1}}\left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)
Now we know that if tan1A=tan1BA=B{{\tan }^{-1}}A={{\tan }^{-1}}B\Rightarrow A=B
Hence we will get the equation
(x+1+x11(x+1)(x1))=(831) 2x1(x+1)(x1)=831 \begin{aligned} & \left( \dfrac{x+1+x-1}{1-(x+1)(x-1)} \right)=\left( \dfrac{8}{31} \right) \\\ & \Rightarrow \dfrac{2x}{1-(x+1)(x-1)}=\dfrac{8}{31} \\\ \end{aligned}
Now we know that (ab)(a+b)=a2b2(a-b)(a+b)={{a}^{2}}-{{b}^{2}} using this formula we get.
(2x1(x21))=(831)\left( \dfrac{2x}{1-({{x}^{2}}-1)} \right)=\left( \dfrac{8}{31} \right)
Cross multiplying the above equation we get
31(2x)=8[1(x21)]31(2x)=8[1-({{x}^{2}}-1)]
Now let us open the brackets
62x=8[1x2+1] 62x=8[2x2] 62x=168x2 \begin{aligned} & 62x=8[1-{{x}^{2}}+1] \\\ & \Rightarrow 62x=8[2-{{x}^{2}}] \\\ & \Rightarrow 62x=16-8{{x}^{2}} \\\ \end{aligned}
Now taking all the terms of RHS to LHS we get
8x2+62x16=08{{x}^{2}}+62x-16=0
Dividing the equation throughout by 2 we get
4x2+31x8=04{{x}^{2}}+31x-8=0
Now we can write 31x as 32x – x . Hence we get
4x2+32xx8=0 4x(x+8)1(x+8)=0 (4x1)(x+8)=0 \begin{aligned} & 4{{x}^{2}}+32x-x-8=0 \\\ & \Rightarrow 4x(x+8)-1(x+8)=0 \\\ & \Rightarrow (4x-1)(x+8)=0 \\\ \end{aligned}
Now we know that a.b=0a=0 or b=0a.b=0\Rightarrow a=0\text{ or }b=0
Hence we get 4x1=04x-1=0 or x+8=0x+8=0
Now if we consider 4x – 1 = 0
We get 4x = 1 which means x=14x=\dfrac{1}{4}
Similarly if we consider x + 8 = 0
Then we get x = - 8
Now if we take x = - 8
tan1(8+1)+tan1(81)=tan1(7)+tan1(9){{\tan }^{-1}}(-8+1)+{{\tan }^{-1}}(-8-1)={{\tan }^{-1}}(-7)+{{\tan }^{-1}}(-9)
Hence by applying the formula tan1A+tan1B{{\tan }^{-1}}A+{{\tan }^{-1}}B is given by tan1(A+B1AB){{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) we get
tan1(791(7)(9))=tan1(16163)=tan1(1662)=tan1(831){{\tan }^{-1}}\left( \dfrac{-7-9}{1-(-7)(-9)} \right)={{\tan }^{-1}}\left( \dfrac{-16}{1-63} \right)={{\tan }^{-1}}\left( \dfrac{-16}{-62} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)
Hence x = -8 does not satisfy the equation.
Now if we take x=14x=\dfrac{1}{4}
tan1(14+1)+tan1(141)=tan1(54)+tan1(34){{\tan }^{-1}}(\dfrac{1}{4}+1)+{{\tan }^{-1}}(\dfrac{1}{4}-1)={{\tan }^{-1}}\left( \dfrac{5}{4} \right)+{{\tan }^{-1}}\left( -\dfrac{3}{4} \right)
Hence by applying the formula tan1A+tan1B{{\tan }^{-1}}A+{{\tan }^{-1}}B is given by tan1(A+B1AB){{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) we get
tan1(54+(34)1(54)(34))=tan1(241+1516)=tan1(16216+15)=tan1(831){{\tan }^{-1}}\left( \dfrac{\dfrac{5}{4}+\left( \dfrac{-3}{4} \right)}{1-\left( \dfrac{5}{4} \right)\left( \dfrac{-3}{4} \right)} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{2}{4}}{1+\dfrac{15}{16}} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{16}{2}}{16+15} \right)={{\tan }^{-1}}\left( \dfrac{8}{31} \right)

Hence the values of x = 14\dfrac{1}{4} and x = -8 both satisfy the equation.

Note: The formula for tan1A+tan1B{{\tan }^{-1}}A+{{\tan }^{-1}}B is given by tan1(A+B1AB){{\tan }^{-1}}\left( \dfrac{A+B}{1-AB} \right) and the formula of tan1Atan1B{{\tan }^{-1}}A-{{\tan }^{-1}}B is given by tan1(AB1+AB){{\tan }^{-1}}\left( \dfrac{A-B}{1+AB} \right) note that you take signs properly.