Solveeit Logo

Question

Question: The given equation is \(\tan ^{-1}\left(\frac{1+x}{1-x}\right)=4\tan ^{-1}x\) solve x...

The given equation is tan1(1+x1x)=4tan1x\tan ^{-1}\left(\frac{1+x}{1-x}\right)=4\tan ^{-1}x solve x

Answer

2-\sqrt{3}

Explanation

Solution

Let θ=tan1x\theta = \tan^{-1}x. Then x=tanθx = \tan\theta. The equation becomes tan1(1+tanθ1tanθ)=4θ\tan^{-1}\left(\frac{1+\tan\theta}{1-\tan\theta}\right) = 4\theta. Using the identity tan(π4+θ)=1+tanθ1tanθ\tan(\frac{\pi}{4}+\theta) = \frac{1+\tan\theta}{1-\tan\theta}, we have tan1(tan(π4+θ))=4θ\tan^{-1}(\tan(\frac{\pi}{4}+\theta)) = 4\theta. This implies π4+θnπ=4θ\frac{\pi}{4}+\theta - n\pi = 4\theta for some integer nn. So, 3θ=π4nπ3\theta = \frac{\pi}{4} - n\pi, which gives θ=π12nπ3\theta = \frac{\pi}{12} - \frac{n\pi}{3}. Since the range of tan1y\tan^{-1}y is (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}), we have π2<4θ<π2-\frac{\pi}{2} < 4\theta < \frac{\pi}{2}, so π8<θ<π8-\frac{\pi}{8} < \theta < \frac{\pi}{8}. For n=0n=0, θ=π12\theta = \frac{\pi}{12}, which lies in (π8,π8)(-\frac{\pi}{8}, \frac{\pi}{8}). For other integer values of nn, θ\theta is outside this range. Thus, x=tan(π12)=tan(15)=tan(4530)=tan45tan301+tan45tan30=1131+113=313+1=(31)231=323+12=4232=23x = \tan(\frac{\pi}{12}) = \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)^2}{3-1} = \frac{3 - 2\sqrt{3} + 1}{2} = \frac{4 - 2\sqrt{3}}{2} = 2 - \sqrt{3}.