Solveeit Logo

Question

Question: The geometric mean of the observations 2, 4, 8, 16, 32, 64 is \( {\text{A}}{\text{. }}{{\text{...

The geometric mean of the observations 2, 4, 8, 16, 32, 64 is
A. 252 B. 272 C. 33 D. None of these  {\text{A}}{\text{. }}{{\text{2}}^{\dfrac{5}{2}}} \\\ {\text{B}}{\text{. }}{{\text{2}}^{\dfrac{7}{2}}} \\\ {\text{C}}{\text{. 33}} \\\ {\text{D}}{\text{. None of these}} \\\

Explanation

Solution

Hint: - Geometric Mean (or GM) : It is a type of mean that indicates the central tendency of a set of numbers by using the product of their values. It is defined as the nth root of the product of n numbers. In this question we have to first observe the values that are used in the formula of Geometric Mean(GM) and then compute it.

Complete step-by-step answer:
xgeom= ni=1nxi  xgeom = nx1.x2.......xn  where, xgeom is the geometric mean(GM) n is the total number of observations ni=1nxi is the nth square root of the product of the given numbers {\overline {\text{x}} _{geom}} = {\text{ }}_{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } \\\ \Rightarrow {\text{ }}{\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^n\sqrt {{x_1}.{x_2}.......{x_n}} \\\ {\text{ where,}} \\\ {\overline {\text{x}} _{geom}}{\text{ is the geometric mean(GM)}} \\\ n{\text{ is the total number of observations}} \\\ _{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } {\text{ is the }}{{\text{n}}^{th}}{\text{ square root of the product of the given numbers}} \\\
Here observations are 2,4,8,16,32,642,4,8,16,32,64
There are total 6 observations i.e., n=6n = 6
And the observations are : x1=2  x2=4  x3=8  x4=16  x5=32 x6=64   {\text{And the observations are :}} \\\ {{\text{x}}_1} = 2{\text{ }} \\\ {{\text{x}}_2} = 4{\text{ }} \\\ {{\text{x}}_3} = 8{\text{ }} \\\ {{\text{x}}_4} = 16{\text{ }} \\\ {{\text{x}}_5} = 32 \\\ {{\text{x}}_6} = 64{\text{ }} \\\

xgeom = 6i=16xi On putting values of observations, we get xgeom = 62.4.8.16.32.64 Now we can rewrite under root terms in terms of power of two in above equation  xgeom = 621.22.23.24.25.26 xgeom = 62(1+2+3+4+5+6)  am.an = a(m+n) xgeom = 2216 xgeom = 272 Hence, option B. is correct \Rightarrow {\overline {\text{x}} _{geom}}{\text{ }} = {\text{ }}_{}^6\sqrt {\prod\limits_{i = 1}^6 {{x_i}} } \\\ {\text{On putting values of observations, we get}} \\\ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {2.4.8.16.32.64} \\\ {\text{Now we can rewrite under root terms in terms of power of two in above equation }} \\\ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^1}{{.2}^2}{{.2}^3}{{.2}^4}{{.2}^5}{{.2}^6}} \\\ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}_{}^6\sqrt {{2^{(1 + 2 + 3 + 4 + 5 + 6)}}} {\text{ \\{ }}\because {{\text{a}}^m}{\text{.}}{{\text{a}}^n}{\text{ = }}{{\text{a}}^{(m + n)}}\\} \\\ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{{21}}{6}}} \\\ \Rightarrow {\overline {\text{x}} _{geom}}{\text{ = }}{{\text{2}}^{\dfrac{7}{2}}} \\\ {\text{Hence, option B}}{\text{. is correct}} \\\

Note:- Whenever you get this type of question the key concept of solving is you have to know the Geometric Mean (GM) formula i.e.,xgeom=ni=1nxi{\overline {\text{x}} _{geom}} = _{}^n\sqrt {\prod\limits_{i = 1}^n {{x_i}} } and interpretation of this formula means you have knowledge about how to interpret n,x1,x2.....xnn,{x_1},{x_2}.....{x_n}. Put values of n,x1,x2.....xnn,{x_1},{x_2}.....{x_n} in GM formula and then solve it to the simplest form.