Solveeit Logo

Question

Question: The general value of \(\theta\)in the equation\(2\sqrt{3}\cos\theta = \tan\theta,\) is...

The general value of θ\thetain the equation23cosθ=tanθ,2\sqrt{3}\cos\theta = \tan\theta, is

A

2nπ±π62n\pi \pm \frac{\pi}{6}

B

2nπ±π42n\pi \pm \frac{\pi}{4}

C

nπ+(1)nπ3n\pi + ( - 1)^{n}\frac{\pi}{3}

D

nπ+(1)nπ4n\pi + ( - 1)^{n}\frac{\pi}{4}

Answer

nπ+(1)nπ3n\pi + ( - 1)^{n}\frac{\pi}{3}

Explanation

Solution

23cos2θ=sinθ23sin2θ+sinθ23=02\sqrt{3}\cos^{2}\theta = \sin\theta \Rightarrow 2\sqrt{3}\sin^{2}\theta + \sin\theta - 2\sqrt{3} = 0

sinθ=1±743sinθ=843\mathbf{\Rightarrow}\mathbf{\sin}\mathbf{\theta}\mathbf{=}\frac{\mathbf{- 1 \pm 7}}{\mathbf{4}\sqrt{\mathbf{3}}}\mathbf{\Rightarrow}\mathbf{\sin}\mathbf{\theta}\mathbf{=}\frac{\mathbf{-}\mathbf{8}}{\mathbf{4}\sqrt{\mathbf{3}}} (impossible) or

sinθ=643=32\sin\theta = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2} θ=nπ+(1)nπ3.\Rightarrow \theta = n\pi + ( - 1)^{n}\frac{\pi}{3}.