Question
Mathematics Question on Trigonometric Functions
The general value of θ satisfying the equation 2sin2θ−3sinθ−2=0 is
A
nπ+(−1)n6π
B
nπ+(−1)n2π
C
nπ+(−1)n65π
D
nπ+(−1)n67π
Answer
nπ+(−1)n67π
Explanation
Solution
2sin2θ−3sinθ−2=0 ⇒(sinθ−2)(2sinθ+1)=0 ⇒sinθ=2 or sinθ=−21 But sinθ=2 is not possible. ∴sinθ=−21=sin(67π) ∴θ=nπ+(−1)n(67π)