Solveeit Logo

Question

Mathematics Question on Trigonometric Functions

The general value of θ\theta satisfying the equation 2sin2θ3sinθ2=02 \sin^2\theta - 3 \sin \theta -2 = 0 is

A

nπ+(1)nπ6n\pi+(-1)^n\frac{\pi}{6}

B

nπ+(1)nπ2n\pi+(-1)^n\frac{\pi}{2}

C

nπ+(1)n5π6n\pi+(-1)^n\frac{5\pi}{6}

D

nπ+(1)n7π6n\pi+(-1)^n\frac{7\pi}{6}

Answer

nπ+(1)n7π6n\pi+(-1)^n\frac{7\pi}{6}

Explanation

Solution

2sin2θ3sinθ2=02 \sin^2 \, \theta - 3 \sin \theta - 2 = 0 (sinθ2)(2sinθ+1)=0\Rightarrow \, \, \, (\sin \theta - 2) (2 \sin \theta + 1) = 0 sinθ=2\Rightarrow \, \, \, \sin \theta = 2 or sinθ=12 \sin \theta = - \frac{1}{2} But sinθ=2\sin \theta = 2 is not possible. sinθ=12=sin(7π6)\therefore \, \, \, \, \, \sin \theta = - \frac{1}{2} = \sin \left( \frac{7 \pi }{ 6} \right) θ=nπ+(1)n(7π6)\therefore \, \, \, \, \theta = n \pi + (-1)^n \left( \frac{7 \pi }{6} \right)