Solveeit Logo

Question

Question: The general value of \(\theta\) is obtained from the equation \(\cos 2\theta = \sin\alpha\) is...

The general value of θ\theta is obtained from the equation

cos2θ=sinα\cos 2\theta = \sin\alpha is

A

2θ=π2α2\theta = \frac{\pi}{2} - \alpha

B

θ=2nπ±(π2α)\theta = 2n\pi \pm \left( \frac{\pi}{2} - \alpha \right)

C

θ=nπ+(1)nα2\theta = \frac{n\pi + ( - 1)^{n}\alpha}{2}

D

θ=nπ±(π4α2)\theta = n\pi \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right)

Answer

θ=nπ±(π4α2)\theta = n\pi \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right)

Explanation

Solution

cos2θ=sinα\cos 2\theta = \sin\alphacos2θ=cos(π2α)\cos 2\theta = \cos\left( \frac{\pi}{2} - \alpha \right)

2θ=2nπ±(π2α)\therefore 2\theta = 2n\pi \pm \left( \frac{\pi}{2} - \alpha \right)θ=nπ±(π4α2)\theta = n\pi \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right)