Solveeit Logo

Question

Question: The general value of \(\theta = (3n + 1)\frac{\pi}{9}\)satisfying the equation \(1 - \cos\theta = \...

The general value of θ=(3n+1)π9\theta = (3n + 1)\frac{\pi}{9}satisfying the equation

1cosθ=sinθ.sinθ21 - \cos\theta = \sin\theta.\sin\frac{\theta}{2} is.

A

2sin2θ2=2sinθ2.cosθ2.sinθ22\sin^{2}\frac{\theta}{2} = 2\sin\frac{\theta}{2}.\cos\frac{\theta}{2}.\sin\frac{\theta}{2}

B

2sin2θ2[1cosθ2]=02\sin^{2}\frac{\theta}{2}\left\lbrack 1 - \cos\frac{\theta}{2} \right\rbrack = 0

C

sinθ2=0\sin\frac{\theta}{2} = 0

D

2sin2θ4=02\sin^{2}\frac{\theta}{4} = 0

Answer

2sin2θ4=02\sin^{2}\frac{\theta}{4} = 0

Explanation

Solution

2sin2θ3sinθ2=02 \sin ^ { 2 } \theta - 3 \sin \theta - 2 = 0 tanθ(sinθ+3)=0\tan\theta(\sin\theta + \sqrt{3}) = 0 \Rightarrow

tanθ=0\tan\theta = 0 \Rightarrow , (sec2θ=1cos2θ=1+tan2θ1tan2θ\sec 2\theta = \frac{1}{\cos 2\theta} = \frac{1 + \tan^{2}\theta}{1 - \tan^{2}\theta} tan2θ+1+tan2θ1tan2θ=1\tan^{2}\theta + \frac{1 + \tan^{2}\theta}{1 - \tan^{2}\theta} = 1

\Rightarrow tan2θ(1tan2θ)+1+tan2θ=1tan2θ\tan^{2}\theta(1 - \tan^{2}\theta) + 1 + \tan^{2}\theta = 1 - \tan^{2}\theta

3tan2θtan4θ=0tan2θ(3tan2θ)=0\Rightarrow 3\tan^{2}\theta - \tan^{4}\theta = 0 \Rightarrow \tan^{2}\theta(3 - \tan^{2}\theta) = 0, \Rightarrow.