Solveeit Logo

Question

Question: The general value of \(\theta = 2n\pi - \frac{\pi}{2}\) satisfying the equation \(\theta\), is....

The general value of θ=2nππ2\theta = 2n\pi - \frac{\pi}{2} satisfying the equation

θ\theta, is.

A

θ=π10\theta = \frac{\pi}{10}

B

sinθ=514\sin\theta = \frac{\sqrt{5} - 1}{4}

C

4sin4x=1cos4x=(1cos2x)(1+cos2x)4\sin^{4}x = 1 - \cos^{4}x = (1 - \cos^{2}x)(1 + \cos^{2}x)

D

\Rightarrow

Answer

sinθ=514\sin\theta = \frac{\sqrt{5} - 1}{4}

Explanation

Solution

(S+3)(4S3)=0\therefore(S + 3)(4S - 3) = 0 S=34S = \frac{3}{4}

\Rightarrow sin2θ=34=sinα\sin 2\theta = \frac{3}{4} = \sin\alpha \therefore 2θ=nπ+(1)nα2\theta = n\pi + ( - 1)^{n}\alpha.