Solveeit Logo

Question

Question: The general value of \(\sin x\cos x = 2\) satisfying \(\sin 2x = 4\) is....

The general value of sinxcosx=2\sin x\cos x = 2 satisfying sin2x=4\sin 2x = 4 is.

A

secθ+tanθ=3\sec\theta + \tan\theta = \sqrt{3}

B

sec2θtan2θ=1\sec^{2}\theta - \tan^{2}\theta = 1

C

\Rightarrow

D

secθtanθ=13\sec\theta - \tan\theta = \frac{1}{\sqrt{3}}

Answer

\Rightarrow

Explanation

Solution

sinθ=643=32\sin\theta = \frac{6}{4\sqrt{3}} = \frac{\sqrt{3}}{2}

\Rightarrow cos2(A+B)+sin2(A+B)+cos2B=0\cos^{2}(A + B) + \sin^{2}(A + B) + \cos 2B = 0 , 1+cos2B=01 + \cos 2B = 0

cos2B=cosπ\cos 2B = \cos\pi 2B=2nπ+π2B = 2n\pi + \pi.