Solveeit Logo

Question

Question: The general solution of x satisfying the equation \[\tan 3x-1=\tan 2x\left( 1+\tan 3x \right)\] is: ...

The general solution of x satisfying the equation tan3x1=tan2x(1+tan3x)\tan 3x-1=\tan 2x\left( 1+\tan 3x \right) is:
(a) nπ+π2;nZn\pi +\dfrac{\pi }{2};n\in Z
(b) nπ+3π4;nZn\pi +\dfrac{3\pi }{4};n\in Z
(c) nπ+π4;nZn\pi +\dfrac{\pi }{4};n\in Z
(d) non-existent

Explanation

Solution

Hint:To solve this question, we should know that the general solution for any angle from [0,π]\left[ 0,\pi \right] is nπ+xn\pi +x, where nZn\in Z. Also, we should know that tan(ab)=tanatanb1+tanatanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}. By using these formulas we will be able to solve the question.

Complete step-by-step answer:
In this question, we have to find the general solution of x which satisfies
tan3x1=tan2x(1+tan3x)\tan 3x-1=\tan 2x\left( 1+\tan 3x \right)
To find the solution of x, we will start from the given condition, that is
tan3x1=tan2x(1+tan3x)\tan 3x-1=\tan 2x\left( 1+\tan 3x \right)
Now, we will open the brackets to simplify it, so we will get,
tan3x1=tan2x+tan2xtan3x\tan 3x-1=\tan 2x+\tan 2x\tan 3x
Now, we will take tan 2x from the right side to the left side of the equation and 1 from the left side to the right side. So, we will get
tan3xtan2x=1+tan2x+tan3x\tan 3x-\tan 2x=1+\tan 2x+\tan 3x
Now, we will divide the whole equation by 1 + tan 2x tan 3x. So, we will get,
tan3xtan2x1+tan2xtan3x=1+tan2xtan3x1+tan2xtan3x\dfrac{\tan 3x-\tan 2x}{1+\tan 2x\tan 3x}=\dfrac{1+\tan 2x\tan 3x}{1+\tan 2x\tan 3x}
And we know that common terms in both numerator and denominator get canceled out. So, we get,
tan3xtan2x1+tan2xtan3x=1\dfrac{\tan 3x-\tan 2x}{1+\tan 2x\tan 3x}=1
Now, we know that tan(ab)=tanatanb1+tanatanb\tan \left( a-b \right)=\dfrac{\tan a-\tan b}{1+\tan a\tan b}
So, we can write,
tan3xtan2x1+tan2xtan3x=tan(3x2x)\dfrac{\tan 3x-\tan 2x}{1+\tan 2x\tan 3x}=\tan \left( 3x-2x \right)
Therefore, we get the equation as,
tan(3x2x)=1\tan \left( 3x-2x \right)=1
tanx=1\tan x=1
And we can write it as
x=tan11x={{\tan }^{-1}}1
And we know that the general solution for y from [0,π]\left[ 0,\pi \right] is nπ+yn\pi +y. Therefore, we get,
x=nπ+tan11x=n\pi +{{\tan }^{-1}}1
And we know that tan11=π4{{\tan }^{-1}}1=\dfrac{\pi }{4}. Therefore, we get x as
x=nπ+π4x=n\pi +\dfrac{\pi }{4} where nZn\in Z
Hence, the option (c) is the right answer.

Note: In this question, we have to convert the angles in terms of one angle and then we have to use for tanx=tanα\tan x=\tan \alpha ; x=nπ+αx=n\pi +\alpha where nZn\in Z and value of tanx repeat after an interval of π\pi, where nπ+αn\pi +\alpha is the general solution for x.