Solveeit Logo

Question

Question: The general solution of \(\theta = 2k\pi\) is....

The general solution of θ=2kπ\theta = 2k\pi is.

A

θ=4kπ\theta = 4k\pi

B

kIk \in I

C

tan3θ1tan3θ+1=3\frac{\tan 3\theta - 1}{\tan 3\theta + 1} = \sqrt{3}

D

tan3θtan(π/4)1+tan3θ.tan(π/4)=3\frac{\tan 3\theta - \tan(\pi/4)}{1 + \tan 3\theta.\tan(\pi/4)} = \sqrt{3}

Answer

kIk \in I

Explanation

Solution

θ=nπ±(π4α2)\theta = n\pi \pm \left( \frac{\pi}{4} - \frac{\alpha}{2} \right)

sin6θ+sin4θ+sin2θ=02sin4θcos2θ+sin4θ=0\sin 6\theta + \sin 4\theta + \sin 2\theta = 0 \Rightarrow 2\sin 4\theta\cos 2\theta + \sin 4\theta = 0 \Rightarrow.