Solveeit Logo

Question

Question: The general solution of the trigonometric equation \(\tan x + \tan 2x + \tan 3x = \tan x.\tan 2x.\ta...

The general solution of the trigonometric equation tanx+tan2x+tan3x=tanx.tan2x.tan3x\tan x + \tan 2x + \tan 3x = \tan x.\tan 2x.\tan 3x is ?

Explanation

Solution

We have given the question in which we have to solve and find the general solution of the trigonometric equation by somewhere using equivalent equations . Equivalent equations are said to be algebraic equations that may have the same solutions if we add or subtract the same number to both sides of an equation - Left hand side or Right hand side of the equal to sign . Or we can multiply or divide the same number to both sides of an equation - Left hand side or Right hand side of the equal to sign with the method of simplification . Also by applying the trigonometric formula .

Complete step by step answer:
In order to solve and simplify the equation we will take common tan 3xtan{\text{ }}3x, so we will subtract tan 3xtan{\text{ }}3xboth the sides of the equation .

tan x+tan 2x+tan 3x=tan x.tan 2x.tan 3x tan x+tan 2x=tan x.tan 2x.tan 3xtan3x tan x+tan 2x=tan3x(tan x.tan 2x1) tan x+tan 2xtan x.tan 2x1=tan3x  \Rightarrow tan{\text{ }}x + tan{\text{ 2}}x + tan{\text{ }}3x = tan{\text{ }}x.tan{\text{ 2}}x.tan{\text{ }}3x \\\ \Rightarrow tan{\text{ }}x + tan{\text{ 2}}x = tan{\text{ }}x.tan{\text{ 2}}x.tan{\text{ }}3x - \tan 3x \\\ \Rightarrow tan{\text{ }}x + tan{\text{ 2}}x = \tan 3x(tan{\text{ }}x.tan{\text{ 2}}x - 1) \\\ \Rightarrow \dfrac{{tan{\text{ }}x + tan{\text{ 2}}x}}{{tan{\text{ }}x.tan{\text{ 2}}x - 1}} = \tan 3x \\\

We will now take minus common from the denominator and shift it to the R.H.S.
tanx+tan2x1tanx.tan2x=tan3x\dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}} = - \tan 3x
Now , we can see the resembling formula of tangent that is tan(A+B)=tanA+tanB1tanA.tanBtan(A + B) = \dfrac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}
tan(x+2x)=tanx+tan2x1tanx.tan2xtan(x + 2x) = \dfrac{{\tan x + \tan 2x}}{{1 - \tan x.\tan 2x}}
So, tan(x+2x)tan(x + 2x)= tan3x - \tan 3x

tan(x+2x)+tan3x=0 2tan3x=0 tan3x=0 3x=nπ,nZ x=nπ3,nZ  tan(x + 2x) + \tan 3x = 0 \\\ \Rightarrow 2\tan 3x = 0 \\\ \Rightarrow \tan 3x = 0 \\\ \Rightarrow 3x = n\pi ,n \in \mathbb{Z} \\\ \Rightarrow x = \dfrac{{n\pi }}{3},n \in \mathbb{Z} \\\

The general solution is x=nπ3x = \dfrac{{n\pi }}{3},nZn \in \mathbb{Z} .

Note: Trigonometry is one of the significant branches throughout the entire existence of mathematics and this idea is given by a Greek mathematician Hipparchus .
In equivalent equations which have identical solutions we can perform multiplication or division by the same non-zero number both L.H.S. and R.H.S. of an equation .
One must be careful while taking values from the trigonometric table and cross-check at least once to avoid any error in the answer .
Remember the trigonometric formulae and always keep the final answer simplified .