Solveeit Logo

Question

Question: The general solution of the trigonometric equation \(\sin x = \pm \sqrt{\frac{2}{5}}\) is....

The general solution of the trigonometric equation sinx=±25\sin x = \pm \sqrt{\frac{2}{5}} is.

A

x=nπx = n\pi

B

cos3x+sin (2x7π6)=2\cos 3x + \sin\ \left( 2x - \frac{7\pi}{6} \right) = - 2

C

\Rightarrow

D

1+cos3x+1+sin(2x7π6)=01 + \cos 3x + 1 + \sin\left( 2x - \frac{7\pi}{6} \right) = 0

Answer

x=nπx = n\pi

Explanation

Solution

tanθ+cotθ=2\Rightarrow \tan\theta + \cot\theta = 2 \Rightarrow sin2θ=1=sinπ2θ=nπ+π4\sin 2\theta = 1 = \sin\frac{\pi}{2} \Rightarrow \theta = n\pi + \frac{\pi}{4}.