Solveeit Logo

Question

Question: The general solution of the equation \[\sin x + \cos x = 1\] is A. \[x = 2n\pi + \dfrac{\pi }{2},n...

The general solution of the equation sinx+cosx=1\sin x + \cos x = 1 is
A. x=2nπ+π2,n=0,±1,±2x = 2n\pi + \dfrac{\pi }{2},n = 0, \pm 1, \pm 2
B. x=nπ+((1)n+1)π4,n=0,±1,±2x = n\pi + \left( {{{\left( { - 1} \right)}^n} + 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2
C. x=nπ+((1)n1)π4,n=0,±1,±2x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2
D. x=2nπ,n=0,±1,±2x = 2n\pi ,n = 0, \pm 1, \pm 2

Explanation

Solution

- Hint: First of all, divide both sides with (Coefficient os sinx)2+(Coefficient of cosx)2\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} . Then split the terms to make the whole equation in terms of sine angles by using the formula sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right) to obtain the required answer.

Complete step-by-step solution -

Given equation is sinx+cosx=1\sin x + \cos x = 1
Dividing both sides with (Coefficient os sinx)2+(Coefficient of cosx)2\sqrt {{{\left( {{\text{Coefficient os }}\sin x} \right)}^2} + {{\left( {{\text{Coefficient of }}\cos x} \right)}^2}} , we get

112+12[sinx+cosx]=112+12 sinx+cosx2=12  \dfrac{1}{{\sqrt {{1^2} + {1^2}} }}\left[ {\sin x + \cos x} \right] = \dfrac{1}{{\sqrt {{1^2} + {1^2}} }} \\\ \dfrac{{\sin x + \cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }} \\\

Splitting the terms, we have
sinx2+cosx2=12\dfrac{{\sin x}}{{\sqrt 2 }} + \dfrac{{\cos x}}{{\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}
Ascos450=sin450=12\cos {45^0} = \sin {45^0} = \dfrac{1}{{\sqrt 2 }}, we have
sinxcos450+cosxsin450=12\sin x\cos {45^0} + \cos x\sin {45^0} = \dfrac{1}{{\sqrt 2 }}
We know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)
sin(x+450)=12\sin \left( {x + {{45}^0}} \right) = \dfrac{1}{{\sqrt 2 }}
We know that, the general solution of sinx=12\sin x = \dfrac{1}{{\sqrt 2 }} is x=nπ+(1)nπ4x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}
sin(x+π4)=sin(nπ+(1)nπ4)\sin \left( {x + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)
Cancelling sine terms on both sides, we get

x+π4=nπ+(1)nπ4 x=nπ+(1)nπ4π4 x=nπ+((1)n1)π4 where n is a integer  x + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\\ x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\\ x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4}{\text{ where }}n{\text{ is a integer}} \\\

Thus, the correct option is C. x=nπ+((1)n1)π4,n=0,±1,±2x = n\pi + \left( {{{\left( { - 1} \right)}^n} - 1} \right)\dfrac{\pi }{4},n = 0, \pm 1, \pm 2

Note: The general solution of sinx=12\sin x = \dfrac{1}{{\sqrt 2 }} is x=nπ+(1)nπ4x = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4}. If you didn’t see the option of your obtained solution, then convert the terms into cosine angles by using the formula cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B.