Solveeit Logo

Question

Question: The general solution of the equation \[\sin \theta + \cos \theta = 1\] is A. \[\theta = 2n\pi + \d...

The general solution of the equation sinθ+cosθ=1\sin \theta + \cos \theta = 1 is
A. θ=2nπ+π2,n=0,±1,±2\theta = 2n\pi + \dfrac{\pi }{2},n = 0, \pm 1, \pm 2
B. θ=nπ+[(1)n+1]π4,n=0,±1,±2\theta = n\pi + \left[ {{{\left( { - 1} \right)}^n} + 1} \right]\dfrac{\pi }{4},n = 0, \pm 1, \pm 2
C. θ=nπ+[(1)n1]π4,n=0,±1,±2\theta = n\pi + \left[ {{{\left( { - 1} \right)}^n} - 1} \right]\dfrac{\pi }{4},n = 0, \pm 1, \pm 2
D. θ=2nπ,n=0,±1,±2+..\theta = 2n\pi ,n = 0, \pm 1, \pm 2 + ..

Explanation

Solution

We have to find the general solution of the given equation. We will first multiply and divide the left-hand side of the given equation by 2\sqrt 2 and will further simplify the equation. As we can compare the obtained equation by sin(a+b)\sin \left( {a + b} \right) and convert the equation in that form and further expand the expression and thus gets the general solution of the equation.

Complete step by step answer:

We have to find the general solution of the given equation sinθ+cosθ=1\sin \theta + \cos \theta = 1.
Now, we will multiply and divide the left-hand side of the given equation by 2\sqrt 2 .
Thus, we get,
2[sinθ12+cosθ12]=1\Rightarrow \sqrt 2 \left[ {\sin \theta \cdot \dfrac{1}{{\sqrt 2 }} + \cos \theta \cdot \dfrac{1}{{\sqrt 2 }}} \right] = 1
As we know that cos45=12\cos 45 = \dfrac{1}{{\sqrt 2 }} and sin45=12\sin 45 = \dfrac{1}{{\sqrt 2 }}. Thus, we get,
sinθcos45+cosθsin45=12\Rightarrow \sin \theta \cos 45 + \cos \theta \sin 45 = \dfrac{1}{{\sqrt 2 }}
As we can compare the left-hand side of the above equation by sin(a+b)=sinacosb+cosasinb\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b.
Thus, we get,
sinθcos45+cosθsin45=sin(θ+π4)\Rightarrow \sin \theta \cos 45 + \cos \theta \sin 45 = \sin \left( {\theta + \dfrac{\pi }{4}} \right)
We can also write the expression sin(θ+π4)\sin \left( {\theta + \dfrac{\pi }{4}} \right) using the expansion of sin(θ+α)=sin(nπ+(1)nα)\sin \left( {\theta + \alpha } \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\alpha } \right) as follows,
sin(θ+π4)=sin(nπ+(1)nπ4)\Rightarrow \sin \left( {\theta + \dfrac{\pi }{4}} \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\dfrac{\pi }{4}} \right)
On further simplifying we get,

θ+π4=nπ+(1)nπ4 θ=nπ+(1)nπ4π4 θ=nπ+[(1)n1]π4  \Rightarrow \theta + \dfrac{\pi }{4} = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} \\\ \Rightarrow \theta = n\pi + {\left( { - 1} \right)^n}\dfrac{\pi }{4} - \dfrac{\pi }{4} \\\ \Rightarrow \theta = n\pi + \left[ {{{\left( { - 1} \right)}^n} - 1} \right]\dfrac{\pi }{4} \\\

Thus, with this we can conclude that the general solution of the given equation is θ=nπ+[(1)n1]π4,n=0,±1,±2\theta = n\pi + \left[ {{{\left( { - 1} \right)}^n} - 1} \right]\dfrac{\pi }{4},n = 0, \pm 1, \pm 2.
Thus, option C is correct.

Note: To find the general solution of the equation, we have to find the value of θ\theta . Remember the basic properties like we have used above also such as sin(a+b)=sinacosb+cosasinb\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b. We need to remember the expansion of sin(θ+α)=sin(nπ+(1)nα)\sin \left( {\theta + \alpha } \right) = \sin \left( {n\pi + {{\left( { - 1} \right)}^n}\alpha } \right). We can take any positive or negative value of nn including 0. In the beginning remember to multiply and divide the left side by 2\sqrt 2 . Do not forget the basic trigonometric values.