Solveeit Logo

Question

Question: The general solution of the equation \(\left( e ^ { y } + 1 \right) \cos x d x + e ^ { y } \sin x d...

The general solution of the equation

(ey+1)cosxdx+eysinxdy=0\left( e ^ { y } + 1 \right) \cos x d x + e ^ { y } \sin x d y = 0 is

A

(ey+1)cosx=c\left( e ^ { y } + 1 \right) \cos x = c

B

(ey1)sinx=c\left( e ^ { y } - 1 \right) \sin x = c

C

(ey+1)sinx=c\left( e ^ { y } + 1 \right) \sin x = c

D

None of these

Answer

(ey+1)sinx=c\left( e ^ { y } + 1 \right) \sin x = c

Explanation

Solution

(ey+1)cosxdx+eysinxdy=0\left( e ^ { y } + 1 \right) \cos x d x + e ^ { y } \sin x d y = 0

eydyey+1+cosxsinxdx=0\frac { e ^ { y } d y } { e ^ { y } + 1 } + \frac { \cos x } { \sin x } d x = 0

On integrating both the functions, we get

log(ey+1)+log(sinx)=logc\log \left( e ^ { y } + 1 \right) + \log ( \sin x ) = \log c(ey+1)sinx=c\left( e ^ { y } + 1 \right) \sin x = c.