Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation ydxxdyy=0\frac{ydx-xdy}{y}=0 is

A

xy=C

B

y=Cy2y=Cy^{2}

C

y=cxy=cx

D

y=Cx2y=Cx^{2}

Answer

y=cxy=cx

Explanation

Solution

The given differential equation is:

ydxxdyy=0\frac{ydx-xdy}{y}=0

ydxxdyxy=0⇒\frac{ydx-xdy}{xy}=0

1xdx1ydy=0⇒\frac{1}{x}dx-\frac{1}{y}dy=0

Integrating both sides,we get:

logxlogy=logklog|x|-log|y|=logk

logxy=logk⇒log|\frac{x}{y}|=logk

xy=k⇒\frac{x}{y}=k

y=1kx⇒y=\frac{1}{k}x

y=CxwhereC=1k⇒y=Cx \:where \:C=\frac{1}{k}

Hence,the correct answer is C.