Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation dydx=ex+y\frac{dy}{dx}=e^{x+y} is

A

ex+ey=Ce^x+e^{-y}=C

B

ex+ey=Ce^x+e^y=C

C

ex+ey=Ce^{-x}+e^y=C

D

ex+ey=Ce^{-x}+e^{-y}=C

Answer

ex+ey=Ce^x+e^{-y}=C

Explanation

Solution

The correct answer is A:ex+ey=Ce^x+e^{-y}=C
dydx=ex+y=ex.ey\frac{dy}{dx}=e^{x+y}=e^x.e^y
dyey=exdx⇒\frac{dy}{e^y}=e^xdx
eydy=exdx⇒e^{-y} dy=e^x dx
Integrating both sides,we get:
eydy=exdx∫e^{-y} dy=∫e^x dx
ey=ex+k⇒-e^{-y}=e^x+k
ex+ey=k⇒e^x+e^{-y}=-k
ex+ey=c(c=k)⇒e^x+e^{-y}=c\,\,\, (c=-k)
Hence,the correct answer is A.