Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation x2 + y2 – 2xy dydx\frac {dy}{dx} = 0 is (where C is a constant of integration.)

A

2(x2 – y2) + x = C

B

x2 + y2 = Cy

C

x2 – y2 = Cx

D

x2 + y2 = Cx

Answer

x2 – y2 = Cx

Explanation

Solution

Given x2 + y2 – 2xy dydx\frac {dy}{dx} = 0
dydx\frac {dy}{dx} = x2+y22xy\frac {x^2 +y^2}{2xy}
dydx\frac {dy}{dx} = x2y+y2x\frac {x}{2y} + \frac {y}{2x}
Let yx\frac {y}{x} = v
dydx\frac {dy}{dx}= v +x dvdx\frac {dv}{dx}
v + xdvdx\frac {dv}{dx} = v2\frac {v}{2} + 12\frac 12v
xdvdx\frac {dv}{dx}= -v + v2\frac {v}{2}+ 12\frac 12 v
xdvdx\frac {dv}{dx} = -v2\frac {v}{2}+ 12\frac 12v
2v1v2\frac {2v}{1-v^2} dv = ∫ 1x\frac {1}x{} dx
ln 11v2\frac {1}{1-v^2} = ln Cx
Where C is a arbitrary constant.
Now put v = yx\frac {y}{x}
ln 11(yx)2\frac {1}{1-(\frac {y}{x})^2}= ln Cx
x2x2y2\frac {x^2}{x^2 - y^2} = Cx
x2 - y2 = Cx is also a constant.
Therefore, the correct answer is (C) x2 – y2 = Cx