Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation dydx+2xy=x2\frac{dy}{dx}+\frac{2}{x}y=x^{2} is

A

y=cx3x24y=cx^{-3}-\frac{x^{2}}{4}

B

y=cx3x24y=cx^{3} - \frac{x^2}{4}

C

y=cx2+x35y=cx^{2} + \frac{x^3}{5}

D

y=cx2+x35y=cx^{-2} + \frac{x^3}{5}

Answer

y=cx2+x35y=cx^{-2} + \frac{x^3}{5}

Explanation

Solution

Given differential equation is dydx+2x.y=x2\frac{dy}{dx}+\frac{2}{x}.y=x^{2} This is of the linear form. P=2x,Q=x2\therefore P=\frac{2}{x}, Q=x^{2} I.F.=e2xdx=elogx2=x2I.F.=e^{\int \frac{2}{x}dx}=e^{log\,x^2}=x^{2} Solution is yx2=x2.x2dx+c=x55+cyx^{2}=\int\,x^{2}\,.x^{2}\,dx+c=\frac{x^{5}}{5}+c y=x35+cx2y=\frac{x^{3}}{5}+cx^{-2}