Solveeit Logo

Question

Question: The general solution of the differential equation \[\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - ...

The general solution of the differential equation sin2x(dydxtanx)y=0\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0 is
A. ytanx=x+cy\sqrt {\tan x} = x + c
B.ycotx=tanx+cy\sqrt {\cot x} = \tan x + c
C.ttanx=cotx+ct\sqrt {\tan x} = \cot x + c
D.ycotx=x+cy\sqrt {\cot x} = x + c

Explanation

Solution

We solve for the solution of differential equation by comparing the equation to general form of differential equation which will give us the values of P(x),Q(x)P(x),Q(x) and then we find the integrating factor using the formula and multiply both sides of the equation by integrating factor and then integrate both sides.

Formula used:
a) Integrating factor is given by the formula I.F=ePdxI.F = {e^{\int {Pdx} }}
b) ddxcotx=cosec2x\dfrac{d}{{dx}}\cot x = - \cos e{c^2}x
c) Chain rule of differentiation says ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x) where f(g(x))f'(g(x)) is differentiation of f with respect to x and g(x)g'(x) is differentiation of g with respect to x.

Complete step-by-step answer:
We are given the differential equation sin2x(dydxtanx)y=0\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) - y = 0
We shift the variable y to one side of the equation
sin2x(dydxtanx)=y\Rightarrow \sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} ) = y
Divide both sides of the equation by sin2x\sin 2x
sin2x(dydxtanx)sin2x=ysin2x\Rightarrow \dfrac{{\sin 2x(\dfrac{{dy}}{{dx}} - \sqrt {\tan x} )}}{{\sin 2x}} = \dfrac{y}{{\sin 2x}}
Cancel out same terms from numerator and denominator
dydxtanx=ysin2x\Rightarrow \dfrac{{dy}}{{dx}} - \sqrt {\tan x} = \dfrac{y}{{\sin 2x}}
Shift the term ysin2x\dfrac{y}{{\sin 2x}} to LHS of the equation and the term tanx\sqrt {\tan x} to RHS of the equation.
dydxysin2x=tanx.(1)\Rightarrow \dfrac{{dy}}{{dx}} - \dfrac{y}{{\sin 2x}} = \sqrt {\tan x} ………. (1)
This equation is of the form dydx+P(x)y=Q(x)\dfrac{{dy}}{{dx}} + P(x)y = Q(x), where P(x)=1sin2x=cosec2x,Q(x)=tanxP(x) = \dfrac{{ - 1}}{{\sin 2x}} = - \cos ec2x,Q(x) = \sqrt {\tan x} {Since we know 1sinx=cosecx\dfrac{1}{{\sin x}} = \cos ecx}
Now we find the integrating factor using the formula I.F=ePdxI.F = {e^{\int {Pdx} }}

I.F=ecosec2xdx I.F=ecosec2xdx  \Rightarrow I.F = {e^{\int { - \cos ec2xdx} }} \\\ \Rightarrow I.F = {e^{ - \int {\cos ec2xdx} }} \\\

We know that cosecx=logtanx2+c\int {\cos ecx = \log \left| {\tan \dfrac{x}{2}} \right|} + c
Therefore, cosec2x=12logtan2x2+c=12logtanx+c\int {\cos ec2x = \dfrac{1}{2}\log \left| {\tan \dfrac{{2x}}{2}} \right|} + c = \dfrac{1}{2}\log \left| {\tan x} \right| + c { integration of 2x2x will give 12\dfrac{1}{2}}
Here we ignore the constant value as we are taking power of exponential. Substitute the value of integration in the power.
I.F=e12log(tanx)\Rightarrow I.F = {e^{ - \dfrac{1}{2}\log (\tan x)}}
Now we know that mlogx=logxmm\log x = \log {x^m}
I.F=elog(tanx)12\Rightarrow I.F = {e^{\log {{(\tan x)}^{ - \dfrac{1}{2}}}}}
Also, we know that (tanx)12=1tanx=cotx{(\tan x)^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\tan x} }} = \sqrt {\cot x}
I.F=elog(cotx)\Rightarrow I.F = {e^{\log (\sqrt {\cot x} )}}
We know that log and exponential cancel each other
I.F=cotx\Rightarrow I.F = \sqrt {\cot x}
Now we multiply both sides of the equation (1) by I.F=cotxI.F = \sqrt {\cot x}
cotxdydxycotxsin2x=cotxtanx..(2)\Rightarrow \sqrt {\cot x} \dfrac{{dy}}{{dx}} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} = \sqrt {\cot x} \sqrt {\tan x} …….. (2)
Now we can write LHS of the equation as
ddx(ycotx)\dfrac{d}{{dx}}(y\sqrt {\cot x} ) because when we use chain rule i.e. ddxf(g(x))=f(g(x))×g(x)\dfrac{d}{{dx}}f(g(x)) = f'(g(x)) \times g'(x) to find differentiation of (ycotx)(y\sqrt {\cot x} ) we see
ddx(ycotx)=dydx(cotx)+yddx(cotx)...(3)\Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}(\sqrt {\cot x} ) + y\dfrac{d}{{dx}}(\sqrt {\cot x} )……... (3)
Here we have to solve for ddx(cotx)\dfrac{d}{{dx}}(\sqrt {\cot x} )
ddx(cotx)=ddx(cotx)12\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{d}{{dx}}{(\cot x)^{\dfrac{1}{2}}}
Using the product rule of differentiation, and ddx(cotx)=cosec2x\dfrac{d}{{dx}}(\cot x) = - \cos e{c^2}x

ddx(cotx)=12(cotx)121×(cosec2x) ddx(cotx)=12(cotx)12×cosec2x  \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = \dfrac{1}{2}{(\cot x)^{\dfrac{1}{2} - 1}} \times ( - \cos e{c^2}x) \\\ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}{(\cot x)^{ - \dfrac{1}{2}}} \times \cos e{c^2}x \\\

Writing cotx12=1cotx\cot {x^{ - \dfrac{1}{2}}} = \dfrac{1}{{\sqrt {\cot x} }}
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\\{ {\dfrac{1}{{\sqrt {\cot x} }}} \right\\} \times \cos e{c^2}x
Rationalize the term inside the bracket by multiplying both numerator and denominator by cotx\sqrt {\cot x}

\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\\{ {\dfrac{1}{{\sqrt {\cot x} }} \times \dfrac{{\sqrt {\cot x} }}{{\sqrt {\cot x} }}} \right\\} \times \dfrac{1}{{{{\sin }^2}x}} \\\ \Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\\{ {\dfrac{{\sqrt {\cot x} }}{{{{\left( {\sqrt {\cot x} } \right)}^2}}}} \right\\} \times \dfrac{1}{{{{\sin }^2}x}} \\\

Cancel square root by square power.
\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\left\\{ {\dfrac{{\sqrt {\cot x} }}{{\cot x}}} \right\\} \times \dfrac{1}{{{{\sin }^2}x}}
Write cotx=cosxsinx\cot x = \dfrac{{\cos x}}{{\sin x}}
ddx(cotx)=12sinxcotxcosx×1sin2x\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sin x\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{{{\sin }^2}x}}
Cancel out same terms from numerator and denominator
ddx(cotx)=12cotxcosx×1sinx\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{1}{2}\dfrac{{\sqrt {\cot x} }}{{\cos x}} \times \dfrac{1}{{\sin x}}
Write the value of 2sinxcosx=sin2x2\sin x\cos x = \sin 2x in the denominator.
ddx(cotx)=cotxsin2x\Rightarrow \dfrac{d}{{dx}}(\sqrt {\cot x} ) = - \dfrac{{\sqrt {\cot x} }}{{\sin 2x}}
Substitute the value in equation (3)
ddx(ycotx)=dydxcotxycotxsin2x\Rightarrow \dfrac{d}{{dx}}(y\sqrt {\cot x} ) = \dfrac{{dy}}{{dx}}\sqrt {\cot x} - \dfrac{{y\sqrt {\cot x} }}{{\sin 2x}} … (4)
Now from equation (4) we can write equation (2) as
ddxycotx=cotxtanx\Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \sqrt {\cot x} \sqrt {\tan x}
Since, cotx=1tanx\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}

ddxycotx=1tanxtanx ddxycotx=1  \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = \dfrac{1}{{\sqrt {\tan x} }}\sqrt {\tan x} \\\ \Rightarrow \dfrac{d}{{dx}}y\sqrt {\cot x} = 1 \\\

Shift dx to RHs of the equation
dycotx=dx\Rightarrow dy\sqrt {\cot x} = dx
Now we integrate both sides of the equation (here cotx\sqrt {\cot x} is taken as constant on LHS)

cotxdy=dx ycotx=x+c  \Rightarrow \int {\sqrt {\cot x} dy} = \int {dx} \\\ \Rightarrow y\sqrt {\cot x} = x + c \\\

So, the correct answer is “Option D”.

Note: Students are likely to make mistake in the part where we convert LHS as differentiation of (ycotx)(y\sqrt {\cot x} ) because many students don’t know the differentiation of cotx=cosec2x\cot x = - \cos e{c^2}x, so they make it more complex. Students are advised to use differentiation and integration of common trigonometric functions directly.