Solveeit Logo

Question

Mathematics Question on homogeneous differential equation

The general solution of the differential equation x2dy2xydx=x4cosxdxx^2dy - 2xydx = x^4\cos\,x\, dx is

A

y=x2sinx+cx2y = x^2 \sin\,x + cx^2

B

y=x2sinx+cy = x^2 \sin\,x + c

C

y=sinx+cx2y = \sin\,x + cx^2

D

y=cosx+cx2y = \cos \,x + cx^2

Answer

y=x2sinx+cx2y = x^2 \sin\,x + cx^2

Explanation

Solution

x2dy2xydx=x4cosxdxx^{2} d y-2 x y d x=x^{4} \cos\, x d x (dydx=x4 cosx+2xyx2)\left(\frac{dy}{dx} = \frac{x^4 \ cos\, x+2xy}{x^2}\right) dy/dx2y/x=x2cosx\Rightarrow d y / d x-2 y / x=x^{2} \cos \,x I.F. =e2/xdx=e2logx=1/x2= e ^{\int-2 / x d x}=e^{-2 \log x}=1 / x^{2} Therefore, the general solution is (y(1x2)=1x2(x2 cosx)dx=sinx+c)\left(y(\frac{1}{x^2}) = \int \frac{1}{x^2}(x^2 \ cos\, x)dx = sin\,x + c\right) y=x2(sinx+c)\therefore y = x ^{2}(\sin\, x + c ) =x2sinx+cx2=x^{2} \sin\, x+c x^{2}