Question
Mathematics Question on homogeneous differential equation
The general solution of the differential equation x2dy−2xydx=x4cosxdx is
A
y=x2sinx+cx2
B
y=x2sinx+c
C
y=sinx+cx2
D
y=cosx+cx2
Answer
y=x2sinx+cx2
Explanation
Solution
x2dy−2xydx=x4cosxdx (dxdy=x2x4 cosx+2xy) ⇒dy/dx−2y/x=x2cosx I.F. =e∫−2/xdx=e−2logx=1/x2 Therefore, the general solution is (y(x21)=∫x21(x2 cosx)dx=sinx+c) ∴y=x2(sinx+c) =x2sinx+cx2