Solveeit Logo

Question

Mathematics Question on Solutions of Differential Equations

The general solution of the differential equation 2x2d2ydx2=xdydx6y=02x^2 \frac{d^2y}{dx^2}=x\frac{dy}{dx}-6y=0 is :

A

y(x)=C1x2+C2xxy(x)=C_1x^2+\frac{C_2}{x\sqrt{x}}

B

y(x)=C1x2+C2x32y(x)=C_1x^2+C_2x^{\frac{3}{2}}

C

y(x)=C1x12+C2x32y(x)=\frac{C_1}{x^{\frac{1}{2}}}+C_2x^{\frac{3}{2}}

D

y(x)=C1x32+C2x4y(x)=C_1x^{\frac{3}{2}}+C_2x^4

Answer

y(x)=C1x2+C2xxy(x)=C_1x^2+\frac{C_2}{x\sqrt{x}}

Explanation

Solution

The correct option is(A):y(x)=C1x2+C2xxy(x)=C_1x^2+\frac{C_2}{x\sqrt{x}}.