Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation (x – y2)dx + y(5x + y2)dy = 0 is:

A

(y2+x)4=C|(y2+2x)3|

B

(y2+2x)4=C|(y2+x)3|

C

|(y2+x)3|=C(2y2+x)4

D

|(y2+2x)3|=C(2y2+x)4

Answer

(y2+x)4=C|(y2+2x)3|

Explanation

Solution

(x−y2)dx+y(5x+y2)dy=0
y dydx\frac{dy}{dx}=y2−x5\frac{x}{5}x+y2
Let y2 = t
12\frac{1}{2}dtdx\frac{dt}{dx}=t−x5\frac{x}{5}x+t
Now substitute, t = vx
dtdx\frac{dt}{dx}=v+x dvdx\frac{dv}{dx}
12\frac{1}{2}{v+x dvdx\frac{dv}{dx}}=v15+v\frac{v-1}{5+v}
x dvdx\frac{dv}{dx}=2v25+vv\frac{2v-2}{5+v}-v=3vv225+v\frac{3v-v^2-2}{5+v}
4v+1dv3v+2dv=dxx\int \frac{4}{v+1}dv-\int\frac{3}{v+2}dv=-\int\frac{dx}{x}
(v+1)4(v+2)3=Cx|\frac{(v+1)^4}{(v+2)^3}|=\frac{C}{x}
(y2x+1)4(y2x+2)3\frac{(\frac{y^2}{x}+1)^4}{(\frac{y^2}{x}+2)^3}=Cx\frac{C}{x}
(y2+x)4(y^2+x)^4=Cy2+2x3C|y^2+2x|^3