Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation (xy2)dx+y(5x+y2)dy=0\left(x-y^2\right) d x+y\left(5 x+y^2\right) d y=0 is :

A

(y2+x)4=C(y2+2x)3\left(y^2+x\right)^4=C\left|\left(y^2+2 x\right)^3\right|

B

(y2+2x)4=C(y2+x)3\left( y ^2+2 x \right)^4= C \left|\left( y ^2+ x \right)^3\right|

C

(y2+x)3=C(2y2+x)4\left|\left(y^2+x\right)^3\right|=C\left(2 y^2+x\right)^4

D

(y2+2x)3=C(2y2+x)4\left|\left(y^2+2 x\right)^3\right|=C\left(2 y^2+x\right)^4

Answer

(y2+x)4=C(y2+2x)3\left(y^2+x\right)^4=C\left|\left(y^2+2 x\right)^3\right|

Explanation

Solution

The correct option is(A): (y2+x)4=C(y2+2x)3\left(y^2+x\right)^4=C\left|\left(y^2+2 x\right)^3\right|.