Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation exdy+(yex+2x)dx=0e^{x}dy+(ye^{x}+2x)dx=0 is

A

xey+x2=Cxe^{y}+x^{2}=C

B

xey+y2=Cxe^{y}+y^{2}=C

C

yex+x2=Cye^{x}+x^{2}=C

D

yey+x2=Cye^{y}+x^{2}=C

Answer

yex+x2=Cye^{x}+x^{2}=C

Explanation

Solution

The given differential equation is:

exdy+(yex+2x)dx=0e^{x}dy+(ye^{x}+2x)dx=0

exdydx=yex+2x=0⇒e^{x}\frac{dy}{dx}=ye^{x}+2x=0

dydx+y=2xex⇒\frac{dy}{dx}+y=-2xe^{-x}

This is a linear differential equation of the form

dydx+py=Q,where  p=1  and  Q=2xex.\frac{dy}{dx}+py=Q,where\; p=1\; and\; Q=-2xe^{-x.}

Now,I.F.=epdx=edx=ex.Now,I.F.=e^{\int{pdx}}=e^{\int{dx}}=e^{x}.

The general solution of the given differential equation is given by,

y(I.F.)=(Q×I.F.)dx+Cy(I.F.)=\int{(Q×I.F.)dx}+C

yex=(2xex.ex)dx+C⇒ye^{x}=\int{(-2xe^{-x}.e^{x})d}x+C

yex=2xdx+C⇒ye^{x}=-\int{2xdx}+C

yex=x2+C⇒ye^{x}=-x^{2}+C

yex+x2=C⇒ye^{x}+x^{2}=C

Hence,the correct answer is C.