Solveeit Logo

Question

Mathematics Question on homogeneous differential equation

The general solution of the differential equation dydx+yx=3x\frac {dy}{dx}+\frac {y}{x}=3x is

A

y=x+cxy=x+ \frac {c}{x}

B

y=x2+cxy=x^2 + \frac {c}{x}

C

y=xcxy=x- \frac {c}{x}

D

y=x2cxy=x^2 - \frac {c}{x}

Answer

y=x2cxy=x^2 - \frac {c}{x}

Explanation

Solution

Given differential equation is dydx+yx=3x\frac{d y}{d x}+\frac{y}{x}=3 x It is a linear differential equation of the form dYdx+Py=Q\frac{d Y}{d x}+P y=Q P=1x and Q=3x\therefore P=\frac{1}{x} \text { and } Q=3 x IF=ePdx=e1xdx\therefore IF =e^{\int P d x}=e^{\int \frac{1}{x} d x} =elogx=x=e^{\log x}=x \therefore Complete solution is yx=3x×xdx+Cy x=\int 3 x \times x d x +C...(i) yx=3[x33]+C\Rightarrow y x=3\left[\frac{x^{3}}{3}\right]+C y=x2+Cx\Rightarrow y=x^{2}+\frac{C}{x} Also, E (i) can be written as yx=3x×xdxCy x=\int 3 x \times x dx-C yx=x3C\Rightarrow y x=x^{3}-C y=x2Cx\Rightarrow y= x^{2}-\frac{C}{x}