Solveeit Logo

Question

Question: The general solution of the differential equation $x^2(1+y^3)dx = y^2(1+x^3)dy$ is...

The general solution of the differential equation x2(1+y3)dx=y2(1+x3)dyx^2(1+y^3)dx = y^2(1+x^3)dy is

A

(1+x2)(1+y2)=C(1+x^2)(1+y^2) = C

B

1+x3=C(1+y3)1+x^3 = C(1+y^3)

C

(x+y)(1+x2+x3)=C(x+y)(1+x^2+x^3) = C

D

x(1+y2)=Cy(1+x2)x(1+y^2) = Cy(1+x^2)

Answer

1+x^3 = C(1+y^3)

Explanation

Solution

The given differential equation is x2(1+y3)dx=y2(1+x3)dyx^2(1+y^3)dx = y^2(1+x^3)dy. This is a first-order differential equation. We can separate the variables xx and yy.

Divide both sides by (1+x3)(1+y3)(1+x^3)(1+y^3), assuming 1+x301+x^3 \neq 0 and 1+y301+y^3 \neq 0:

x2(1+y3)(1+x3)(1+y3)dx=y2(1+x3)(1+x3)(1+y3)dy\frac{x^2(1+y^3)}{(1+x^3)(1+y^3)}dx = \frac{y^2(1+x^3)}{(1+x^3)(1+y^3)}dy

x21+x3dx=y21+y3dy\frac{x^2}{1+x^3}dx = \frac{y^2}{1+y^3}dy

Now, integrate both sides:

x21+x3dx=y21+y3dy\int \frac{x^2}{1+x^3}dx = \int \frac{y^2}{1+y^3}dy

For the integral on the left side, let u=1+x3u = 1+x^3. Then du=3x2dxdu = 3x^2 dx. So x2dx=13dux^2 dx = \frac{1}{3}du.

x21+x3dx=1u(13du)=131udu=13lnu+C1=13ln1+x3+C1\int \frac{x^2}{1+x^3}dx = \int \frac{1}{u} \left(\frac{1}{3}du\right) = \frac{1}{3}\int \frac{1}{u}du = \frac{1}{3}\ln|u| + C_1 = \frac{1}{3}\ln|1+x^3| + C_1.

For the integral on the right side, let v=1+y3v = 1+y^3. Then dv=3y2dydv = 3y^2 dy. So y2dy=13dvy^2 dy = \frac{1}{3}dv.

y21+y3dy=1v(13dv)=131vdv=13lnv+C2=13ln1+y3+C2\int \frac{y^2}{1+y^3}dy = \int \frac{1}{v} \left(\frac{1}{3}dv\right) = \frac{1}{3}\int \frac{1}{v}dv = \frac{1}{3}\ln|v| + C_2 = \frac{1}{3}\ln|1+y^3| + C_2.

Equating the results of the integration:

13ln1+x3+C1=13ln1+y3+C2\frac{1}{3}\ln|1+x^3| + C_1 = \frac{1}{3}\ln|1+y^3| + C_2

13ln1+x313ln1+y3=C2C1\frac{1}{3}\ln|1+x^3| - \frac{1}{3}\ln|1+y^3| = C_2 - C_1

13(ln1+x3ln1+y3)=C3\frac{1}{3}(\ln|1+x^3| - \ln|1+y^3|) = C_3, where C3=C2C1C_3 = C_2 - C_1 is an arbitrary constant.

13ln1+x31+y3=C3\frac{1}{3}\ln\left|\frac{1+x^3}{1+y^3}\right| = C_3

ln1+x31+y3=3C3\ln\left|\frac{1+x^3}{1+y^3}\right| = 3C_3

1+x31+y3=e3C3\left|\frac{1+x^3}{1+y^3}\right| = e^{3C_3}

1+x31+y3=±e3C3\frac{1+x^3}{1+y^3} = \pm e^{3C_3}

Let C=±e3C3C = \pm e^{3C_3}. Since C3C_3 is an arbitrary constant, e3C3e^{3C_3} is an arbitrary positive constant. Thus, CC is an arbitrary non-zero constant.

1+x3=C(1+y3)1+x^3 = C(1+y^3), where C0C \neq 0.