Solveeit Logo

Question

Question: The general solution of the differential equation (1 + tan y) (dx – dy) + 2xdy = 0 is –...

The general solution of the differential equation (1 + tan y) (dx – dy) + 2xdy = 0 is –

A

x(sin y + cos y) = sin y + cey

B

x(sin y + cos y) = sin y + ce–y

C

y(sin x + cos x) = sin x + cex

D

None of these

Answer

x(sin y + cos y) = sin y + ce–y

Explanation

Solution

We have, (1 + tan y) (dx – dy ) + 2x dy = 0

Ž (1 + tan y) dx = (1 + tan y – 2x) dy

Ž dxdy\frac{dx}{dy} + 21+tany\frac{2}{1 + \tan y}x = 1, which is linear in x.

I.F. = e2dy1+tanye^{2\int_{}^{}\frac{dy}{1 + \tan y}} = e2cosysiny+cosydye^{\int_{}^{}\frac{2\cos y}{\sin y + \cos y}dy}

= e(1+cosysinysiny+cosy)dye^{\int_{}^{}\left( 1 + \frac{\cos y - \sin y}{\sin y + \cos y} \right)dy}= ey + log(cos y + sin y)

= (cos y + sin y) ey.

So, the solution is

xey (sin y + cos y) = ey\int_{}^{}e^{y} (sin y + cos y) dy + c

i.e. xey (sin y + cos y) = ey sin y + c.

i.e. x (sin y + cos y) = sin y + ce–y