Question
Question: The general solution of the differential equation (1 + tan y) (dx – dy) + 2xdy = 0 is –...
The general solution of the differential equation (1 + tan y) (dx – dy) + 2xdy = 0 is –
A
x(sin y + cos y) = sin y + cey
B
x(sin y + cos y) = sin y + ce–y
C
y(sin x + cos x) = sin x + cex
D
None of these
Answer
x(sin y + cos y) = sin y + ce–y
Explanation
Solution
We have, (1 + tan y) (dx – dy ) + 2x dy = 0
Ž (1 + tan y) dx = (1 + tan y – 2x) dy
Ž dydx + 1+tany2x = 1, which is linear in x.
I.F. = e2∫1+tanydy = e∫siny+cosy2cosydy
= e∫(1+siny+cosycosy−siny)dy= ey + log(cos y + sin y)
= (cos y + sin y) ey.
So, the solution is
xey (sin y + cos y) = ∫ey (sin y + cos y) dy + c
i.e. xey (sin y + cos y) = ey sin y + c.
i.e. x (sin y + cos y) = sin y + ce–y