Solveeit Logo

Question

Question: The general solution of the differential equation y (x<sup>2</sup>y + e<sup>x</sup>)dx – e<sup>x</su...

The general solution of the differential equation y (x2y + ex)dx – exdy = 0 is –

A

x3y – 3ex = cy

B

x3y + 3ex = cy

C

y3x – 3ey = cx

D

y3x + 3ey = cx

Answer

x3y + 3ex = cy

Explanation

Solution

We have y (x2y + ex) dx – ex dy = 0

Ž ex dydx\frac{dy}{dx} = x2y2 + yex

Dividing by y2ex, we get dydx\frac{dy}{dx}1y\frac{1}{y} = x2e–x

Put 1y\frac{1}{y} = V so that 1y2\frac { - 1 } { y ^ { 2 } } dydx\frac{dy}{dx} = dVdx\frac{dV}{dx}.

We thus have dVdx\frac{dV}{dx} + V = –x2e–x, which is linear

\ I. F. = e1dxe^{\int_{}^{}{1dx}}= ex.

Hence the solution is

V . ex = – x2ex\int_{}^{}{x^{2}e^{–x}}. ex dx + C3\frac{C}{3}

or 1y\frac{1}{y}ex = – x33\frac{x^{3}}{3} + C3\frac{C}{3} or x3y + 3ex = Cy