Question
Question: The general solution of the differential equation (2x - u + 1)dx +(2y - x + 1)dy = 0 is...
The general solution of the differential equation (2x - u + 1)dx +(2y - x + 1)dy = 0 is
A
x2+y2+xy−x+y=c
B
x2+y2−xy+x+y=c
C
x2−y2+xy−x+y=c
D
x2−y2−2xy+x−y=c
Answer
x2+y2−xy+x+y=c
Explanation
Solution
(2x - y + 1)dx + (2y - x + 1)dx = 0
dxdy=x−2y−12x−y+1, put x = X + h, y = Y + k
dXdY=X−2Y+h−2k−12X−Y+2h−k+1
2h−k+1=0⇒h−2k−1=0
On solving h = -1, k = -1 ∴ dXdY=X−2Y2X−Y
Put Y=νX;∴dXdY=ν+XdXdν
ν+XdXdν=X−2νX2X−νX=1−2ν2−ν
XdXdν=1−2ν2−2ν+2ν2=1−2ν2(2ν2−ν+1)
∴XdX=2(ν2−ν+1)(1−2ν)dν
Put ν2−ν+1=t⇒(2ν−1)dν=dt
∴X=t−1/2c⇒X=(ν2−ν+1)−1/2.c
X2(ν2−ν+1)=constant
(x+1)2((x+1)2(y+1)2−x+1(y+1)+1)=constant
(y+1)2−(y+1)(x+1)+(x+1)2=c
y2+x2−xy+x+y=c.