Solveeit Logo

Question

Question: The general solution of the differential equation \(\frac{dy}{dx}\) = (x<sup>3</sup> – 2x tan<sup>–...

The general solution of the differential equation dydx\frac{dy}{dx}

= (x3 – 2x tan–1y) (1 + y2) is-

A

2tan–1x = y2 – 1 + 2C ex2e^{- x^{2}}

B

2tan–1y = x2 – 1 + 2C ex2e^{- x^{2}}

C

2tan–1y = y2 – 1 + 2C ex2e^{- x^{2}}

D

2tan–1x = x2 – 1 + 2C ex2e^{- x^{2}}

Answer

2tan–1y = x2 – 1 + 2C ex2e^{- x^{2}}

Explanation

Solution

11+y2.dydx\frac{1}{1 + y^{2}}.\frac{dy}{dx} + 2x(tan–1y) = x3

Put tan–1y = z

\ 11+y2.dydx\frac{1}{1 + y^{2}}.\frac{dy}{dx} = dzdx\frac{dz}{dx}

dzdx\frac{dz}{dx} + (2x)z = x3

Ž z. ex2e^{x^{2}} = 122ex2.x3dx+C\frac{1}{2}\int_{}^{}{2e^{x^{2}}.x^{3}dx + C}

Ž 2ex2(tan1y)2e^{x^{2}}(\tan^{- 1}y) = x2 ex2e^{x^{2}}ex2e^{x^{2}} + 2C

Ž 2tan–1y = x2 – 1 + 2Cex2e^{- x^{2}}