Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the differential equation (x+y+3)dydx=1(x + y + 3) \,\frac{dy}{dx}\, =\,1 is

A

x+y+3=Ceyx + y + 3 = Ce^y

B

x+y+4=Ceyx + y + 4 = Ce^y

C

x+y+3=Ceyx + y + 3 = Ce^{-y}

D

x+y+4=Ceyx + y + 4 = Ce^{-y}

Answer

x+y+4=Ceyx + y + 4 = Ce^y

Explanation

Solution

We have, (x+y+3)dydx=1(x+y+3) \frac{d y}{d x}=1
(x+y+3)=dxdy\Rightarrow (x+y+3)=\frac{d x}{d y}
Let x+y+3=tx+y+3=t
On differentiating w.r.t.y, we get
dxdy+1=dtdy\frac{d x}{d y}+1=\frac{d t}{d y}
dtdy=t+1[ from E (i), t=dxdy]\Rightarrow \frac{d t}{d y}=t+1\left[\because \text { from E (i), } t=\frac{d x}{d y}\right]
On integrating both sides,
dt(t+1)=dy\int \frac{d t}{(t+1)}=\int d y
log(t+1)=y+C1\Rightarrow \log (t+1)=y+C_{1}
log(x+y+3+1)=y+C1\Rightarrow \log (x+y+3+1)=y+C_{1}
x+y+4=Cey\therefore x+y+4=C e^{y} [where ,c=ec1c=e^{c_{1}}]