Solveeit Logo

Question

Mathematics Question on Differential equations

The general solution of the different equation 100d2ydx220dydx+y=0100\frac{d^{2}y}{dx^{2}}-20 \frac{dy}{dx}+y = 0 is

A

y=(c1+c2x)exy = \left(c_{1} + c_{2} \,x\right)e^{x}

B

y=(c1+c2x)exy = \left(c_{1} + c_{2} \,x\right)e^{-x}

C

y=(c1+c2x)ex10y = \left(c_{1} + c_{2} \,x\right)e^{\frac{x}{10}}

D

y=c1ex+c2exy = c_{1}\,e^{x}+c_{2}\,e^{-x}

Answer

y=(c1+c2x)ex10y = \left(c_{1} + c_{2} \,x\right)e^{\frac{x}{10}}

Explanation

Solution

Equation is given by
100p220p+1=0100\, p^{2}-20\, p+1=0
(10p1)2=0,p=110,p=110(10 \,p-1)^{2}=0,\, p=\frac{1}{10}, \,p=\frac{1}{10}
\therefore General solution is
y=(c1+c2x)ex10y=\left(c_{1}+c_{2} \,x\right) e^{\frac{x}{10}}