Question
Question: The general solution of \(\tan\left( 3\theta - \frac{\pi}{4} \right) = \tan\frac{\pi}{3}\) is....
The general solution of tan(3θ−4π)=tan3π is.
A
3θ−(π/4)=nπ+(π/3)
B
3θ=nπ+127π
C
θ=3nπ+367π
D
2−2sin2x+3sinx−3=0
Answer
3θ=nπ+127π
Explanation
Solution
The given equation can be written as
sin4θ(2cos2θ+1)=0⇒2cos2θ=−1 ⇒
cos2θ=−21 ⇒ 2θ=2nπ±32π⇒θ=nπ±3π sin4θ=0⇒4θ=nπ⇒θ=4nπθ=4nπ.