Solveeit Logo

Question

Question: The general solution of \(\tan\left( 3\theta - \frac{\pi}{4} \right) = \tan\frac{\pi}{3}\) is....

The general solution of tan(3θπ4)=tanπ3\tan\left( 3\theta - \frac{\pi}{4} \right) = \tan\frac{\pi}{3} is.

A

3θ(π/4)=nπ+(π/3)3\theta - (\pi/4) = n\pi + (\pi/3)

B

3θ=nπ+7π123\theta = n\pi + \frac{7\pi}{12}

C

θ=nπ3+7π36\theta = \frac{n\pi}{3} + \frac{7\pi}{36}

D

22sin2x+3sinx3=02 - 2\sin^{2}x + 3\sin x - 3 = 0

Answer

3θ=nπ+7π123\theta = n\pi + \frac{7\pi}{12}

Explanation

Solution

The given equation can be written as

sin4θ(2cos2θ+1)=02cos2θ=1\sin 4\theta(2\cos 2\theta + 1) = 0 \Rightarrow 2\cos 2\theta = - 1 \Rightarrow

cos2θ=12\cos 2\theta = - \frac{1}{2} \Rightarrow 2θ=2nπ±2π3θ=nπ±π32\theta = 2n\pi \pm \frac{2\pi}{3} \Rightarrow \theta = n\pi \pm \frac{\pi}{3} sin4θ=04θ=nπθ=nπ4θ=nπ4\sin 4\theta = 0 \Rightarrow 4\theta = n\pi \Rightarrow \theta = \frac{n\pi}{4}\theta = \frac{n\pi}{4}.