Solveeit Logo

Question

Question: The general solution of \(\tan 3x=1\) is A) \(n\pi +\dfrac{\pi }{4}\) B) \(\dfrac{n\pi }{3}+\df...

The general solution of tan3x=1\tan 3x=1 is
A) nπ+π4n\pi +\dfrac{\pi }{4}
B) nπ3+π12\dfrac{n\pi }{3}+\dfrac{\pi }{12}
C) nπn\pi
D) nπ±π4n\pi \pm \dfrac{\pi }{4}

Explanation

Solution

Here, we need to find the general solution oftan3x=1\tan 3x=1. For that, we will put the value of 1, which istanπ4\tan \dfrac{\pi }{4} , then we will equate tan3x\tan 3xwithtanπ4\tan \dfrac{\pi }{4}. And we will find the general solution oftan3x=tanπ4\tan 3x=\tan \dfrac{\pi }{4}. As the general solution of tanθ=tanα\tan \theta =\tan \alpha isθ=nπ+α\theta =n\pi +\alpha . We will replace θ\theta with 3x and replace α\alpha with π4\dfrac{\pi }{4} and we will find the required general formula.

Complete step by step solution:
It is given:
tan3x=1\tan 3x=1, we have to find its general solution.
We know,tanπ4=1\tan \dfrac{\pi }{4}=1, so we will put tanπ4\tan \dfrac{\pi }{4} in place of 1.
Therefore,
tan3x=tanπ4\tan 3x=\tan \dfrac{\pi }{4}
We know the general solution of is.
Here, we will replace θ\theta with 3x and replace α\alpha with π4\dfrac{\pi }{4}.
So, the general solution of tan3x=tanπ4\tan 3x=\tan \dfrac{\pi }{4}is 3x=nπ+π43x=n\pi +\dfrac{\pi }{4}
Rewriting the general solution obtained, we get
3x=nπ+π43x=n\pi +\dfrac{\pi }{4}
Now, we will divide both sides by 3.
3x3=nπ+π43\dfrac{3x}{3}=\dfrac{n\pi +\dfrac{\pi }{4}}{3}
After simplification, we get
x=nπ3+π12x=\dfrac{n\pi }{3}+\dfrac{\pi }{12}
Therefore, the general solution of tan3x=1\tan 3x=1isx=nπ3+π12x=\dfrac{n\pi }{3}+\dfrac{\pi }{12}.

Thus, the correct option is B.

Note:
We have used the general solution of tanθ=tanα\tan \theta =\tan \alpha here. To understand it deeply, let’s look at the derivation of their general solution.
We want to find the general solution of tanθ=tanα\tan \theta =\tan \alpha here.
Rewriting equation, we get
tanθ=tanα\tan \theta =\tan \alpha
We will break tanθ&tanα\tan \theta \And \tan \alphain terms of sine and cosine now.
sinθcosθ=sinαcosα\dfrac{\sin \theta }{\cos \theta }=\dfrac{\sin \alpha }{\cos \alpha }
Now, we will subtract sinαcosα\dfrac{\sin \alpha }{\cos \alpha }from both sides.
sinθcosθsinαcosα=sinαcosαsinαcosα\dfrac{\sin \theta }{\cos \theta }-\dfrac{\sin \alpha }{\cos \alpha }=\dfrac{\sin \alpha }{\cos \alpha }-\dfrac{\sin \alpha }{\cos \alpha }
On further simplification, we get
sinθcosθsinαcosα=0\dfrac{\sin \theta }{\cos \theta }-\dfrac{\sin \alpha }{\cos \alpha }=0
We will find the difference of these two fractions.
sinθ.cosαsinα.cosθcosθ.cosα=0\dfrac{\sin \theta .\cos \alpha -\sin \alpha .\cos \theta }{\cos \theta .\cos \alpha }=0
We know the formula:-sin(θα)=sinθ.cosαsinα.cosθ\sin (\theta -\alpha )=sin\theta .\cos \alpha -\sin \alpha .\cos \theta
Therefore,
sin(θα)cosθ.cosα=0\dfrac{\sin \left( \theta -\alpha \right)}{\cos \theta .\cos \alpha }=0
Fraction would be 0 only when sin(θα)\sin \left( \theta -\alpha \right)is 0.
sin(θα)=0\sin \left( \theta -\alpha \right)=0
We know, the general solution of sinθ=0\sin \theta =0 isθ=nπ\theta =n\pi .
Therefore, the general solution of sin(θα)=0\sin \left( \theta -\alpha \right)=0is θα=nπ\theta -\alpha =n\pi
Rewriting the general solution obtained, we get
θα=nπ\theta -\alpha =n\pi
Adding on both sides, we get
θα+α=nπ+α θ=nπ+α \begin{aligned} & \theta -\alpha +\alpha =n\pi +\alpha \\\ & \Rightarrow \theta =n\pi +\alpha \\\ \end{aligned}
Hence, the general solution of tanθ=tanα\tan \theta =\tan \alpha isθ=nπ+α\theta =n\pi +\alpha.