Question
Question: The general solution of \[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] is A.\[n\pi +\dfrac{\p...
The general solution of sinx−3sin2x+sin3x=cosx−3cos2x+cos3x is
A.nπ+8π
B.2nπ+8π
C.(−1)n(2nπ+8π)
D.2nπ−8π
Solution
Hint: We know the formula, sinA+sinB=2sin(2A+B)cos(2A−B) and cosA+cosB=2cos(2A+B)cos(2A−B) . Use this formula and simplify sinx+sin3x and cosx+cos3x and then, substitute it in the equation sinx−3sin2x+sin3x=cosx−3cos2x+cos3x . We know that the maximum value of cosine function is 1. We know that tan4π=1 and the general solution of tanx=tan4π is x=nπ+4π .
Complete step-by-step answer:
According to the question, we have to find the general solution of,
sinx−3sin2x+sin3x=cosx−3cos2x+cos3x ……………..(1)
We know the formula,
sinA+sinB=2sin(2A+B)cos(2A−B) …………………(2)
Replacing A by x and B by 3x in the equation (2), we get
sinx+sin3x=2sin(2x+3x)cos(2x−3x)
⇒sinx+sin3x=2sin2xcos(−x) ……………….(4)
We know the property that, cos(−x)=cosx .
Using this property in equation (4), we get
⇒sinx+sin3x=2sin2xcos(−x)
⇒sinx+sin3x=2sin2xcosx …………………….(5)
We also know the formula,
cosA+cosB=2cos(2A+B)cos(2A−B) …………………(6)
Replacing A by x and B by 3x in the equation (6), we get
cosx+cos3x=2cos(2x+3x)cos(2x−3x)
⇒cosx+cos3x=2cos2xcos(−x) ……………….(7)
We know the property that, cos(−x)=cosx .
Using this property in equation (7), we get
⇒cosx+cos3x=2cos2xcos(−x)
⇒cosx+cos3x=2cos2xcosx …………………….(8)
From equation (1), we have
sinx−3sin2x+sin3x=cosx−3cos2x+cos3x
⇒sinx+sin3x−3sin2x=cosx+cos2x−3cos2x …………………(9)
Now, from equation (5), equation (8), and equation (9), we get
⇒sinx+sin3x−3sin2x=cosx+cos3x−3cos2x
⇒2sin2xcosx−3sin2x=2cos2xcosx−3cos2x
Taking sin2x in the above equation, we get
⇒sin2x(2cosx−3)=cos2x(2cosx−3)