Solveeit Logo

Question

Question: The general solution of \[\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x\] is A.\[n\pi +\dfrac{\p...

The general solution of sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x is
A.nπ+π8n\pi +\dfrac{\pi }{8}
B.nπ2+π8\dfrac{n\pi }{2}+\dfrac{\pi }{8}
C.(1)n(nπ2+π8){{\left( -1 \right)}^{n}}\left( \dfrac{n\pi }{2}+\dfrac{\pi }{8} \right)
D.2nππ82n\pi -\dfrac{\pi }{8}

Explanation

Solution

Hint: We know the formula, sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) and cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) . Use this formula and simplify sinx+sin3x\sin x+\sin 3x and cosx+cos3x\cos x+\cos 3x and then, substitute it in the equation sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x . We know that the maximum value of cosine function is 1. We know that tanπ4=1\tan \dfrac{\pi }{4}=1 and the general solution of tanx=tanπ4\tan x=\tan \dfrac{\pi }{4} is x=nπ+π4x=n\pi +\dfrac{\pi }{4} .

Complete step-by-step answer:
According to the question, we have to find the general solution of,
sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x ……………..(1)
We know the formula,
sinA+sinB=2sin(A+B2)cos(AB2)\sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) …………………(2)
Replacing A by x and B by 3x in the equation (2), we get
sinx+sin3x=2sin(x+3x2)cos(x3x2)\sin x+\sin 3x=2\sin \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)
sinx+sin3x=2sin2xcos(x)\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x) ……………….(4)
We know the property that, cos(x)=cosx\cos (-x)=\cos x .
Using this property in equation (4), we get
sinx+sin3x=2sin2xcos(x)\Rightarrow \sin x+\sin 3x=2\sin 2x\cos (-x)
sinx+sin3x=2sin2xcosx\Rightarrow \sin x+\sin 3x=2\sin 2x\cos x …………………….(5)
We also know the formula,
cosA+cosB=2cos(A+B2)cos(AB2)\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) …………………(6)
Replacing A by x and B by 3x in the equation (6), we get
cosx+cos3x=2cos(x+3x2)cos(x3x2)\cos x+\cos 3x=2\cos \left( \dfrac{x+3x}{2} \right)\cos \left( \dfrac{x-3x}{2} \right)
cosx+cos3x=2cos2xcos(x)\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x) ……………….(7)
We know the property that, cos(x)=cosx\cos (-x)=\cos x .
Using this property in equation (7), we get
cosx+cos3x=2cos2xcos(x)\Rightarrow \cos x+\cos 3x=2\cos 2x\cos (-x)
cosx+cos3x=2cos2xcosx\Rightarrow \cos x+\cos 3x=2\cos 2x\cos x …………………….(8)
From equation (1), we have
sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x
sinx+sin3x3sin2x=cosx+cos2x3cos2x\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 2x-3\cos 2x …………………(9)
Now, from equation (5), equation (8), and equation (9), we get
sinx+sin3x3sin2x=cosx+cos3x3cos2x\Rightarrow \sin x+\sin 3x-3\sin 2x=\cos x+\cos 3x-3\cos 2x
2sin2xcosx3sin2x=2cos2xcosx3cos2x\Rightarrow 2\sin 2x\cos x-3\sin 2x=2\cos 2x\cos x-3\cos 2x
Taking sin2x\sin 2x in the above equation, we get
sin2x(2cosx3)=cos2x(2cosx3)\Rightarrow \sin 2x\left( 2\cos x-3 \right)=\cos 2x\left( 2\cos x-3 \right)

& \Rightarrow \sin 2x\left( 2\cos x-3 \right)-\cos 2x\left( 2\cos x-3 \right)=0 \\\ & \Rightarrow \left( 2\cos x-3 \right)\left( \sin 2x-\cos 2x \right)=0 \\\ \end{aligned}$$ $$\left( 2\cos x-3 \right)=0$$ or $$\left( \sin 2x-\cos 2x \right)=0$$ . First, let us solve for $$\left( 2\cos x-3 \right)=0$$ $$\left( 2\cos x-3 \right)=0$$ $$\begin{aligned} & \Rightarrow 2\cos x=3 \\\ & \Rightarrow \cos x=\dfrac{3}{2} \\\ \end{aligned}$$ We know that the maximum value of the cosine function is 1 and here, we have $$\cos x=\dfrac{3}{2}$$ , which is not possible for any value of x. Now, we have to solve $$\left( \sin 2x-\cos 2x \right)=0$$ . $$\left( \sin 2x-\cos 2x \right)=0$$ $$\Rightarrow \sin 2x=\cos 2x$$ $$\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1$$ …………….(10) We know that, $$\dfrac{\sin A}{\cos A}=\tan A$$ . Replacing A by 2x in $$\dfrac{\sin A}{\cos A}=\tan A$$ , we get $$\dfrac{\sin 2x}{\cos 2x}=\tan 2x$$ ………(11) From equation (10) and equation (11), we get $$\Rightarrow \dfrac{\sin 2x}{\cos 2x}=1$$ $$\Rightarrow \tan 2x=1$$ …………..(12) Using $$\tan \dfrac{\pi }{4}=1$$ in equation (12), we get $$\begin{aligned} & \Rightarrow \tan 2x=\tan \dfrac{\pi }{4} \\\ & \Rightarrow 2x=\dfrac{\pi }{4} \\\ \end{aligned}$$ Using $$\tan \dfrac{5\pi }{4}=1$$ in equation (12), we get $$\begin{aligned} & \Rightarrow \tan 2x=\tan \dfrac{5\pi }{4} \\\ & \Rightarrow 2x=\dfrac{5\pi }{4} \\\ \end{aligned}$$ We have $$2x=\dfrac{\pi }{4}$$ , $$2x=\dfrac{5\pi }{4}=\pi +\dfrac{\pi }{4}$$ ………………. Now, in general we can say that, $$\begin{aligned} & 2x=n\pi +\dfrac{\pi }{4} \\\ & \Rightarrow x=\dfrac{n\pi }{2}+\dfrac{\pi }{8} \\\ \end{aligned}$$ So, the correct option is option (B). Note: In this question, one might think to find the general solution of $$\cos x=\dfrac{3}{2}$$ . But we don’t have any solution for $$\cos x=\dfrac{3}{2}$$ because the maximum value of cosine function is 1. Also, one can think to use formula $$\cos 2x={{\cos }^{2}}x-{{\sin }^{2}}x$$ and $$\sin 2x=2\sin x\cos x$$ in the equation $$\sin x-3\sin 2x+\sin 3x=\cos x-3\cos 2x+\cos 3x$$ . If we do so, then our equation will become complex to solve.