Solveeit Logo

Question

Question: The general solution of \( \sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x \) is A. \( n...

The general solution of sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x is
A. nπ+π8n\pi + \dfrac{\pi }{8}
B. nπ2+π8\dfrac{{n\pi }}{2} + \dfrac{\pi }{8}
C. (1)nnπ2+π8{( - 1)^n}\dfrac{{n\pi }}{2} + \dfrac{\pi }{8}
D. 2nπ+Cos1322n\pi + {\operatorname{Cos} ^{ - 1}}\dfrac{3}{2}

Explanation

Solution

Hint : By using the formula for finding SinC+SinD\operatorname{Sin} C + \operatorname{Sin} D and CosC+CosD\operatorname{Cos} C + \operatorname{Cos} D we can simplify the given equation and with knowledge of the general solution of trigonometric functions like sinx, cosx, tanx we can find out the correct answer to this question.

Complete step-by-step answer :
We are given that,
sinx3sin2x+sin3x=cosx3cos2x+cos3x\sin x - 3\sin 2x + \sin 3x = \cos x - 3\cos 2x + \cos 3x
We can rewrite the above equation as,
(sinx+sin3x)3sin2x=(cosx+cos3x)3cos2x(\sin x + \sin 3x) - 3\sin 2x = (\cos x + \cos 3x) - 3\cos 2x ….(1)
Using the identities
SinC+SinD=2SinC+D2CosCD2\operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2}
And
CosC+CosD=2cosC+D2cosCD2\operatorname{Cos} C + \operatorname{Cos} D = 2\cos \dfrac{{C + D}}{2}\cos \dfrac{{C - D}}{2}
in equation (1), we get
(2sinx+3x2cosx3x2)3sin2x=(2cosx+3x2cosx3x2)3cos2x 2sin4x2cos2x23sin2x=2cos4x2cos2x23cos2x 2sin2xcos(x)3sin2x=2cos2xcos(x)3cos2x   \Rightarrow (2\sin \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\sin 2x = (2\cos \dfrac{{x + 3x}}{2}\cos \dfrac{{x - 3x}}{2}) - 3\cos 2x \\\ \Rightarrow 2\sin \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\sin 2x = 2\cos \dfrac{{4x}}{2}\cos \dfrac{{ - 2x}}{2} - 3\cos 2x \\\ 2\sin 2x\cos ( - x) - 3\sin 2x = 2\cos 2x\cos ( - x) - 3\cos 2x \;
Now, cosx\cos x has a positive value when x lies in the fourth quadrant and an angle of –x signifies an angle of (360-x)° i.e. the angle lies in the fourth quadrant.
cos(360x)=cosx cos(x)=cosx   \cos (360 - x) = \cos x \\\ \Rightarrow \cos ( - x) = \cos x \;
Using the above results in the equation obtained,
2sin2xcosx3sin2x=2cos2xcosx3cos2x2\sin 2x\cos x - 3\sin 2x = 2\cos 2x\cos x - 3\cos 2x
Taking sin2x\sin 2x common from the left-hand side and cos2x\cos 2x common from the right-hand side, we get
sin2x(2cosx3)=cos2x(2cosx3) sin2xcos2x=2cosx32cosx3 tan2x=1   \sin 2x(2\cos x - 3) = \cos 2x(2\cos x - 3) \\\ \dfrac{{\sin 2x}}{{\cos 2x}} = \dfrac{{2\cos x - 3}}{{2\cos x - 3}} \\\ \tan 2x = 1 \;
Now, we know that the general solution of tanx=1\tan x = 1 is x=nπ+π4x = n\pi + \dfrac{\pi }{4}
2x=nπ+π4 x=nπ2+π8   \therefore 2x = n\pi + \dfrac{\pi }{4} \\\ x = \dfrac{{n\pi }}{2} + \dfrac{\pi }{8} \;
Hence, option (B) is the correct answer.
So, the correct answer is “Option B”.

Additional information :
sinx\sin x has a negative value when x lies in the fourth quadrant,
sin(360x)=sinx sin(x)=sinx   \sin (360 - x) = - \sin x \\\ \Rightarrow \sin ( - x) = - \sin x \;
tanx\tan x also has a negative value when x lies in the fourth quadrant,
tan(360x)=tanx tan(x)=tanx   \tan (360 - x) = - \tan x \\\ \Rightarrow \tan ( - x) = - \tan x \;

Note :
SinC+SinD=2SinC+D2CosCD2 SinCSinD=2CosC+D2SinCD2 CosC+CosD=2CosC+D2CosCD2 CosCCosD=2SinC+D2SinCD2  \operatorname{Sin} C + \operatorname{Sin} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\\ \operatorname{Sin} C - \operatorname{Sin} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\\ \operatorname{Cos} C + \operatorname{Cos} D = 2\operatorname{Cos} \dfrac{{C + D}}{2}\operatorname{Cos} \dfrac{{C - D}}{2} \\\ \operatorname{Cos} C - \operatorname{Cos} D = 2\operatorname{Sin} \dfrac{{C + D}}{2}\operatorname{Sin} \dfrac{{C - D}}{2} \\\
Remember these formulas and don’t get confused between them.
cosx\cos x is an even function as cos(x)=cosx\cos ( - x) = \cos x ,while sinx\sin x and tanx\tan x are odd functions.